| Step |
Hyp |
Ref |
Expression |
| 1 |
|
crctcsh.v |
|- V = ( Vtx ` G ) |
| 2 |
|
crctcsh.i |
|- I = ( iEdg ` G ) |
| 3 |
|
crctcsh.d |
|- ( ph -> F ( Circuits ` G ) P ) |
| 4 |
|
crctcsh.n |
|- N = ( # ` F ) |
| 5 |
|
crctcsh.s |
|- ( ph -> S e. ( 0 ..^ N ) ) |
| 6 |
|
crctcsh.h |
|- H = ( F cyclShift S ) |
| 7 |
|
crctcsh.q |
|- Q = ( x e. ( 0 ... N ) |-> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) ) |
| 8 |
|
oveq2 |
|- ( S = 0 -> ( F cyclShift S ) = ( F cyclShift 0 ) ) |
| 9 |
|
crctiswlk |
|- ( F ( Circuits ` G ) P -> F ( Walks ` G ) P ) |
| 10 |
2
|
wlkf |
|- ( F ( Walks ` G ) P -> F e. Word dom I ) |
| 11 |
|
cshw0 |
|- ( F e. Word dom I -> ( F cyclShift 0 ) = F ) |
| 12 |
3 9 10 11
|
4syl |
|- ( ph -> ( F cyclShift 0 ) = F ) |
| 13 |
8 12
|
sylan9eqr |
|- ( ( ph /\ S = 0 ) -> ( F cyclShift S ) = F ) |
| 14 |
6 13
|
eqtrid |
|- ( ( ph /\ S = 0 ) -> H = F ) |
| 15 |
|
oveq2 |
|- ( S = 0 -> ( N - S ) = ( N - 0 ) ) |
| 16 |
1 2 3 4
|
crctcshlem1 |
|- ( ph -> N e. NN0 ) |
| 17 |
16
|
nn0cnd |
|- ( ph -> N e. CC ) |
| 18 |
17
|
subid1d |
|- ( ph -> ( N - 0 ) = N ) |
| 19 |
15 18
|
sylan9eqr |
|- ( ( ph /\ S = 0 ) -> ( N - S ) = N ) |
| 20 |
19
|
breq2d |
|- ( ( ph /\ S = 0 ) -> ( x <_ ( N - S ) <-> x <_ N ) ) |
| 21 |
20
|
adantr |
|- ( ( ( ph /\ S = 0 ) /\ x e. ( 0 ... N ) ) -> ( x <_ ( N - S ) <-> x <_ N ) ) |
| 22 |
|
oveq2 |
|- ( S = 0 -> ( x + S ) = ( x + 0 ) ) |
| 23 |
22
|
adantl |
|- ( ( ph /\ S = 0 ) -> ( x + S ) = ( x + 0 ) ) |
| 24 |
|
elfzelz |
|- ( x e. ( 0 ... N ) -> x e. ZZ ) |
| 25 |
24
|
zcnd |
|- ( x e. ( 0 ... N ) -> x e. CC ) |
| 26 |
25
|
addridd |
|- ( x e. ( 0 ... N ) -> ( x + 0 ) = x ) |
| 27 |
23 26
|
sylan9eq |
|- ( ( ( ph /\ S = 0 ) /\ x e. ( 0 ... N ) ) -> ( x + S ) = x ) |
| 28 |
27
|
fveq2d |
|- ( ( ( ph /\ S = 0 ) /\ x e. ( 0 ... N ) ) -> ( P ` ( x + S ) ) = ( P ` x ) ) |
| 29 |
27
|
fvoveq1d |
|- ( ( ( ph /\ S = 0 ) /\ x e. ( 0 ... N ) ) -> ( P ` ( ( x + S ) - N ) ) = ( P ` ( x - N ) ) ) |
| 30 |
21 28 29
|
ifbieq12d |
|- ( ( ( ph /\ S = 0 ) /\ x e. ( 0 ... N ) ) -> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) = if ( x <_ N , ( P ` x ) , ( P ` ( x - N ) ) ) ) |
| 31 |
30
|
mpteq2dva |
|- ( ( ph /\ S = 0 ) -> ( x e. ( 0 ... N ) |-> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) ) = ( x e. ( 0 ... N ) |-> if ( x <_ N , ( P ` x ) , ( P ` ( x - N ) ) ) ) ) |
| 32 |
|
elfzle2 |
|- ( x e. ( 0 ... N ) -> x <_ N ) |
| 33 |
32
|
adantl |
|- ( ( ph /\ x e. ( 0 ... N ) ) -> x <_ N ) |
| 34 |
33
|
iftrued |
|- ( ( ph /\ x e. ( 0 ... N ) ) -> if ( x <_ N , ( P ` x ) , ( P ` ( x - N ) ) ) = ( P ` x ) ) |
| 35 |
34
|
mpteq2dva |
|- ( ph -> ( x e. ( 0 ... N ) |-> if ( x <_ N , ( P ` x ) , ( P ` ( x - N ) ) ) ) = ( x e. ( 0 ... N ) |-> ( P ` x ) ) ) |
| 36 |
1
|
wlkp |
|- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> V ) |
| 37 |
3 9 36
|
3syl |
|- ( ph -> P : ( 0 ... ( # ` F ) ) --> V ) |
| 38 |
|
ffn |
|- ( P : ( 0 ... ( # ` F ) ) --> V -> P Fn ( 0 ... ( # ` F ) ) ) |
| 39 |
4
|
eqcomi |
|- ( # ` F ) = N |
| 40 |
39
|
oveq2i |
|- ( 0 ... ( # ` F ) ) = ( 0 ... N ) |
| 41 |
40
|
fneq2i |
|- ( P Fn ( 0 ... ( # ` F ) ) <-> P Fn ( 0 ... N ) ) |
| 42 |
38 41
|
sylib |
|- ( P : ( 0 ... ( # ` F ) ) --> V -> P Fn ( 0 ... N ) ) |
| 43 |
42
|
adantl |
|- ( ( ph /\ P : ( 0 ... ( # ` F ) ) --> V ) -> P Fn ( 0 ... N ) ) |
| 44 |
|
dffn5 |
|- ( P Fn ( 0 ... N ) <-> P = ( x e. ( 0 ... N ) |-> ( P ` x ) ) ) |
| 45 |
43 44
|
sylib |
|- ( ( ph /\ P : ( 0 ... ( # ` F ) ) --> V ) -> P = ( x e. ( 0 ... N ) |-> ( P ` x ) ) ) |
| 46 |
45
|
eqcomd |
|- ( ( ph /\ P : ( 0 ... ( # ` F ) ) --> V ) -> ( x e. ( 0 ... N ) |-> ( P ` x ) ) = P ) |
| 47 |
37 46
|
mpdan |
|- ( ph -> ( x e. ( 0 ... N ) |-> ( P ` x ) ) = P ) |
| 48 |
35 47
|
eqtrd |
|- ( ph -> ( x e. ( 0 ... N ) |-> if ( x <_ N , ( P ` x ) , ( P ` ( x - N ) ) ) ) = P ) |
| 49 |
48
|
adantr |
|- ( ( ph /\ S = 0 ) -> ( x e. ( 0 ... N ) |-> if ( x <_ N , ( P ` x ) , ( P ` ( x - N ) ) ) ) = P ) |
| 50 |
31 49
|
eqtrd |
|- ( ( ph /\ S = 0 ) -> ( x e. ( 0 ... N ) |-> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) ) = P ) |
| 51 |
7 50
|
eqtrid |
|- ( ( ph /\ S = 0 ) -> Q = P ) |
| 52 |
14 51
|
jca |
|- ( ( ph /\ S = 0 ) -> ( H = F /\ Q = P ) ) |