| Step |
Hyp |
Ref |
Expression |
| 1 |
|
crctcsh.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
crctcsh.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 3 |
|
crctcsh.d |
⊢ ( 𝜑 → 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) |
| 4 |
|
crctcsh.n |
⊢ 𝑁 = ( ♯ ‘ 𝐹 ) |
| 5 |
|
crctcsh.s |
⊢ ( 𝜑 → 𝑆 ∈ ( 0 ..^ 𝑁 ) ) |
| 6 |
|
crctcsh.h |
⊢ 𝐻 = ( 𝐹 cyclShift 𝑆 ) |
| 7 |
|
crctcsh.q |
⊢ 𝑄 = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) |
| 8 |
|
oveq2 |
⊢ ( 𝑆 = 0 → ( 𝐹 cyclShift 𝑆 ) = ( 𝐹 cyclShift 0 ) ) |
| 9 |
|
crctiswlk |
⊢ ( 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 10 |
2
|
wlkf |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
| 11 |
|
cshw0 |
⊢ ( 𝐹 ∈ Word dom 𝐼 → ( 𝐹 cyclShift 0 ) = 𝐹 ) |
| 12 |
3 9 10 11
|
4syl |
⊢ ( 𝜑 → ( 𝐹 cyclShift 0 ) = 𝐹 ) |
| 13 |
8 12
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → ( 𝐹 cyclShift 𝑆 ) = 𝐹 ) |
| 14 |
6 13
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → 𝐻 = 𝐹 ) |
| 15 |
|
oveq2 |
⊢ ( 𝑆 = 0 → ( 𝑁 − 𝑆 ) = ( 𝑁 − 0 ) ) |
| 16 |
1 2 3 4
|
crctcshlem1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 17 |
16
|
nn0cnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 18 |
17
|
subid1d |
⊢ ( 𝜑 → ( 𝑁 − 0 ) = 𝑁 ) |
| 19 |
15 18
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → ( 𝑁 − 𝑆 ) = 𝑁 ) |
| 20 |
19
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → ( 𝑥 ≤ ( 𝑁 − 𝑆 ) ↔ 𝑥 ≤ 𝑁 ) ) |
| 21 |
20
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑆 = 0 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → ( 𝑥 ≤ ( 𝑁 − 𝑆 ) ↔ 𝑥 ≤ 𝑁 ) ) |
| 22 |
|
oveq2 |
⊢ ( 𝑆 = 0 → ( 𝑥 + 𝑆 ) = ( 𝑥 + 0 ) ) |
| 23 |
22
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → ( 𝑥 + 𝑆 ) = ( 𝑥 + 0 ) ) |
| 24 |
|
elfzelz |
⊢ ( 𝑥 ∈ ( 0 ... 𝑁 ) → 𝑥 ∈ ℤ ) |
| 25 |
24
|
zcnd |
⊢ ( 𝑥 ∈ ( 0 ... 𝑁 ) → 𝑥 ∈ ℂ ) |
| 26 |
25
|
addridd |
⊢ ( 𝑥 ∈ ( 0 ... 𝑁 ) → ( 𝑥 + 0 ) = 𝑥 ) |
| 27 |
23 26
|
sylan9eq |
⊢ ( ( ( 𝜑 ∧ 𝑆 = 0 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → ( 𝑥 + 𝑆 ) = 𝑥 ) |
| 28 |
27
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑆 = 0 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) = ( 𝑃 ‘ 𝑥 ) ) |
| 29 |
27
|
fvoveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑆 = 0 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) = ( 𝑃 ‘ ( 𝑥 − 𝑁 ) ) ) |
| 30 |
21 28 29
|
ifbieq12d |
⊢ ( ( ( 𝜑 ∧ 𝑆 = 0 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) = if ( 𝑥 ≤ 𝑁 , ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 − 𝑁 ) ) ) ) |
| 31 |
30
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ 𝑁 , ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 − 𝑁 ) ) ) ) ) |
| 32 |
|
elfzle2 |
⊢ ( 𝑥 ∈ ( 0 ... 𝑁 ) → 𝑥 ≤ 𝑁 ) |
| 33 |
32
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → 𝑥 ≤ 𝑁 ) |
| 34 |
33
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → if ( 𝑥 ≤ 𝑁 , ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 − 𝑁 ) ) ) = ( 𝑃 ‘ 𝑥 ) ) |
| 35 |
34
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ 𝑁 , ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 − 𝑁 ) ) ) ) = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ ( 𝑃 ‘ 𝑥 ) ) ) |
| 36 |
1
|
wlkp |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
| 37 |
3 9 36
|
3syl |
⊢ ( 𝜑 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
| 38 |
|
ffn |
⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 39 |
4
|
eqcomi |
⊢ ( ♯ ‘ 𝐹 ) = 𝑁 |
| 40 |
39
|
oveq2i |
⊢ ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( 0 ... 𝑁 ) |
| 41 |
40
|
fneq2i |
⊢ ( 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ↔ 𝑃 Fn ( 0 ... 𝑁 ) ) |
| 42 |
38 41
|
sylib |
⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → 𝑃 Fn ( 0 ... 𝑁 ) ) |
| 43 |
42
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) → 𝑃 Fn ( 0 ... 𝑁 ) ) |
| 44 |
|
dffn5 |
⊢ ( 𝑃 Fn ( 0 ... 𝑁 ) ↔ 𝑃 = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ ( 𝑃 ‘ 𝑥 ) ) ) |
| 45 |
43 44
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) → 𝑃 = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ ( 𝑃 ‘ 𝑥 ) ) ) |
| 46 |
45
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) → ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ ( 𝑃 ‘ 𝑥 ) ) = 𝑃 ) |
| 47 |
37 46
|
mpdan |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ ( 𝑃 ‘ 𝑥 ) ) = 𝑃 ) |
| 48 |
35 47
|
eqtrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ 𝑁 , ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 − 𝑁 ) ) ) ) = 𝑃 ) |
| 49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ 𝑁 , ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 − 𝑁 ) ) ) ) = 𝑃 ) |
| 50 |
31 49
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) = 𝑃 ) |
| 51 |
7 50
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → 𝑄 = 𝑃 ) |
| 52 |
14 51
|
jca |
⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → ( 𝐻 = 𝐹 ∧ 𝑄 = 𝑃 ) ) |