| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dffn5 |
|- ( F Fn ( V X. W ) <-> F = ( z e. ( V X. W ) |-> ( F ` z ) ) ) |
| 2 |
|
cureq |
|- ( F = ( z e. ( V X. W ) |-> ( F ` z ) ) -> curry F = curry ( z e. ( V X. W ) |-> ( F ` z ) ) ) |
| 3 |
1 2
|
sylbi |
|- ( F Fn ( V X. W ) -> curry F = curry ( z e. ( V X. W ) |-> ( F ` z ) ) ) |
| 4 |
3
|
adantr |
|- ( ( F Fn ( V X. W ) /\ B e. W ) -> curry F = curry ( z e. ( V X. W ) |-> ( F ` z ) ) ) |
| 5 |
|
fveq2 |
|- ( z = <. x , y >. -> ( F ` z ) = ( F ` <. x , y >. ) ) |
| 6 |
5
|
mpompt |
|- ( z e. ( V X. W ) |-> ( F ` z ) ) = ( x e. V , y e. W |-> ( F ` <. x , y >. ) ) |
| 7 |
|
fvex |
|- ( F ` <. x , y >. ) e. _V |
| 8 |
7
|
rgen2w |
|- A. x e. V A. y e. W ( F ` <. x , y >. ) e. _V |
| 9 |
8
|
a1i |
|- ( ( F Fn ( V X. W ) /\ B e. W ) -> A. x e. V A. y e. W ( F ` <. x , y >. ) e. _V ) |
| 10 |
|
ne0i |
|- ( B e. W -> W =/= (/) ) |
| 11 |
10
|
adantl |
|- ( ( F Fn ( V X. W ) /\ B e. W ) -> W =/= (/) ) |
| 12 |
6 9 11
|
mpocurryd |
|- ( ( F Fn ( V X. W ) /\ B e. W ) -> curry ( z e. ( V X. W ) |-> ( F ` z ) ) = ( x e. V |-> ( y e. W |-> ( F ` <. x , y >. ) ) ) ) |
| 13 |
4 12
|
eqtrd |
|- ( ( F Fn ( V X. W ) /\ B e. W ) -> curry F = ( x e. V |-> ( y e. W |-> ( F ` <. x , y >. ) ) ) ) |
| 14 |
13
|
3adant2 |
|- ( ( F Fn ( V X. W ) /\ A e. V /\ B e. W ) -> curry F = ( x e. V |-> ( y e. W |-> ( F ` <. x , y >. ) ) ) ) |
| 15 |
14
|
fveq1d |
|- ( ( F Fn ( V X. W ) /\ A e. V /\ B e. W ) -> ( curry F ` A ) = ( ( x e. V |-> ( y e. W |-> ( F ` <. x , y >. ) ) ) ` A ) ) |
| 16 |
15
|
adantr |
|- ( ( ( F Fn ( V X. W ) /\ A e. V /\ B e. W ) /\ W e. X ) -> ( curry F ` A ) = ( ( x e. V |-> ( y e. W |-> ( F ` <. x , y >. ) ) ) ` A ) ) |
| 17 |
|
mptexg |
|- ( W e. X -> ( y e. W |-> ( F ` <. A , y >. ) ) e. _V ) |
| 18 |
|
opeq1 |
|- ( x = A -> <. x , y >. = <. A , y >. ) |
| 19 |
18
|
fveq2d |
|- ( x = A -> ( F ` <. x , y >. ) = ( F ` <. A , y >. ) ) |
| 20 |
19
|
mpteq2dv |
|- ( x = A -> ( y e. W |-> ( F ` <. x , y >. ) ) = ( y e. W |-> ( F ` <. A , y >. ) ) ) |
| 21 |
|
eqid |
|- ( x e. V |-> ( y e. W |-> ( F ` <. x , y >. ) ) ) = ( x e. V |-> ( y e. W |-> ( F ` <. x , y >. ) ) ) |
| 22 |
20 21
|
fvmptg |
|- ( ( A e. V /\ ( y e. W |-> ( F ` <. A , y >. ) ) e. _V ) -> ( ( x e. V |-> ( y e. W |-> ( F ` <. x , y >. ) ) ) ` A ) = ( y e. W |-> ( F ` <. A , y >. ) ) ) |
| 23 |
17 22
|
sylan2 |
|- ( ( A e. V /\ W e. X ) -> ( ( x e. V |-> ( y e. W |-> ( F ` <. x , y >. ) ) ) ` A ) = ( y e. W |-> ( F ` <. A , y >. ) ) ) |
| 24 |
23
|
3ad2antl2 |
|- ( ( ( F Fn ( V X. W ) /\ A e. V /\ B e. W ) /\ W e. X ) -> ( ( x e. V |-> ( y e. W |-> ( F ` <. x , y >. ) ) ) ` A ) = ( y e. W |-> ( F ` <. A , y >. ) ) ) |
| 25 |
16 24
|
eqtrd |
|- ( ( ( F Fn ( V X. W ) /\ A e. V /\ B e. W ) /\ W e. X ) -> ( curry F ` A ) = ( y e. W |-> ( F ` <. A , y >. ) ) ) |
| 26 |
25
|
fveq1d |
|- ( ( ( F Fn ( V X. W ) /\ A e. V /\ B e. W ) /\ W e. X ) -> ( ( curry F ` A ) ` B ) = ( ( y e. W |-> ( F ` <. A , y >. ) ) ` B ) ) |
| 27 |
|
opeq2 |
|- ( y = B -> <. A , y >. = <. A , B >. ) |
| 28 |
27
|
fveq2d |
|- ( y = B -> ( F ` <. A , y >. ) = ( F ` <. A , B >. ) ) |
| 29 |
|
eqid |
|- ( y e. W |-> ( F ` <. A , y >. ) ) = ( y e. W |-> ( F ` <. A , y >. ) ) |
| 30 |
|
fvex |
|- ( F ` <. A , B >. ) e. _V |
| 31 |
28 29 30
|
fvmpt |
|- ( B e. W -> ( ( y e. W |-> ( F ` <. A , y >. ) ) ` B ) = ( F ` <. A , B >. ) ) |
| 32 |
|
df-ov |
|- ( A F B ) = ( F ` <. A , B >. ) |
| 33 |
31 32
|
eqtr4di |
|- ( B e. W -> ( ( y e. W |-> ( F ` <. A , y >. ) ) ` B ) = ( A F B ) ) |
| 34 |
33
|
3ad2ant3 |
|- ( ( F Fn ( V X. W ) /\ A e. V /\ B e. W ) -> ( ( y e. W |-> ( F ` <. A , y >. ) ) ` B ) = ( A F B ) ) |
| 35 |
34
|
adantr |
|- ( ( ( F Fn ( V X. W ) /\ A e. V /\ B e. W ) /\ W e. X ) -> ( ( y e. W |-> ( F ` <. A , y >. ) ) ` B ) = ( A F B ) ) |
| 36 |
26 35
|
eqtrd |
|- ( ( ( F Fn ( V X. W ) /\ A e. V /\ B e. W ) /\ W e. X ) -> ( ( curry F ` A ) ` B ) = ( A F B ) ) |