| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dffn5 |  |-  ( F Fn ( V X. W ) <-> F = ( z e. ( V X. W ) |-> ( F ` z ) ) ) | 
						
							| 2 |  | cureq |  |-  ( F = ( z e. ( V X. W ) |-> ( F ` z ) ) -> curry F = curry ( z e. ( V X. W ) |-> ( F ` z ) ) ) | 
						
							| 3 | 1 2 | sylbi |  |-  ( F Fn ( V X. W ) -> curry F = curry ( z e. ( V X. W ) |-> ( F ` z ) ) ) | 
						
							| 4 | 3 | adantr |  |-  ( ( F Fn ( V X. W ) /\ B e. W ) -> curry F = curry ( z e. ( V X. W ) |-> ( F ` z ) ) ) | 
						
							| 5 |  | fveq2 |  |-  ( z = <. x , y >. -> ( F ` z ) = ( F ` <. x , y >. ) ) | 
						
							| 6 | 5 | mpompt |  |-  ( z e. ( V X. W ) |-> ( F ` z ) ) = ( x e. V , y e. W |-> ( F ` <. x , y >. ) ) | 
						
							| 7 |  | fvex |  |-  ( F ` <. x , y >. ) e. _V | 
						
							| 8 | 7 | rgen2w |  |-  A. x e. V A. y e. W ( F ` <. x , y >. ) e. _V | 
						
							| 9 | 8 | a1i |  |-  ( ( F Fn ( V X. W ) /\ B e. W ) -> A. x e. V A. y e. W ( F ` <. x , y >. ) e. _V ) | 
						
							| 10 |  | ne0i |  |-  ( B e. W -> W =/= (/) ) | 
						
							| 11 | 10 | adantl |  |-  ( ( F Fn ( V X. W ) /\ B e. W ) -> W =/= (/) ) | 
						
							| 12 | 6 9 11 | mpocurryd |  |-  ( ( F Fn ( V X. W ) /\ B e. W ) -> curry ( z e. ( V X. W ) |-> ( F ` z ) ) = ( x e. V |-> ( y e. W |-> ( F ` <. x , y >. ) ) ) ) | 
						
							| 13 | 4 12 | eqtrd |  |-  ( ( F Fn ( V X. W ) /\ B e. W ) -> curry F = ( x e. V |-> ( y e. W |-> ( F ` <. x , y >. ) ) ) ) | 
						
							| 14 | 13 | 3adant2 |  |-  ( ( F Fn ( V X. W ) /\ A e. V /\ B e. W ) -> curry F = ( x e. V |-> ( y e. W |-> ( F ` <. x , y >. ) ) ) ) | 
						
							| 15 | 14 | fveq1d |  |-  ( ( F Fn ( V X. W ) /\ A e. V /\ B e. W ) -> ( curry F ` A ) = ( ( x e. V |-> ( y e. W |-> ( F ` <. x , y >. ) ) ) ` A ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ( F Fn ( V X. W ) /\ A e. V /\ B e. W ) /\ W e. X ) -> ( curry F ` A ) = ( ( x e. V |-> ( y e. W |-> ( F ` <. x , y >. ) ) ) ` A ) ) | 
						
							| 17 |  | mptexg |  |-  ( W e. X -> ( y e. W |-> ( F ` <. A , y >. ) ) e. _V ) | 
						
							| 18 |  | opeq1 |  |-  ( x = A -> <. x , y >. = <. A , y >. ) | 
						
							| 19 | 18 | fveq2d |  |-  ( x = A -> ( F ` <. x , y >. ) = ( F ` <. A , y >. ) ) | 
						
							| 20 | 19 | mpteq2dv |  |-  ( x = A -> ( y e. W |-> ( F ` <. x , y >. ) ) = ( y e. W |-> ( F ` <. A , y >. ) ) ) | 
						
							| 21 |  | eqid |  |-  ( x e. V |-> ( y e. W |-> ( F ` <. x , y >. ) ) ) = ( x e. V |-> ( y e. W |-> ( F ` <. x , y >. ) ) ) | 
						
							| 22 | 20 21 | fvmptg |  |-  ( ( A e. V /\ ( y e. W |-> ( F ` <. A , y >. ) ) e. _V ) -> ( ( x e. V |-> ( y e. W |-> ( F ` <. x , y >. ) ) ) ` A ) = ( y e. W |-> ( F ` <. A , y >. ) ) ) | 
						
							| 23 | 17 22 | sylan2 |  |-  ( ( A e. V /\ W e. X ) -> ( ( x e. V |-> ( y e. W |-> ( F ` <. x , y >. ) ) ) ` A ) = ( y e. W |-> ( F ` <. A , y >. ) ) ) | 
						
							| 24 | 23 | 3ad2antl2 |  |-  ( ( ( F Fn ( V X. W ) /\ A e. V /\ B e. W ) /\ W e. X ) -> ( ( x e. V |-> ( y e. W |-> ( F ` <. x , y >. ) ) ) ` A ) = ( y e. W |-> ( F ` <. A , y >. ) ) ) | 
						
							| 25 | 16 24 | eqtrd |  |-  ( ( ( F Fn ( V X. W ) /\ A e. V /\ B e. W ) /\ W e. X ) -> ( curry F ` A ) = ( y e. W |-> ( F ` <. A , y >. ) ) ) | 
						
							| 26 | 25 | fveq1d |  |-  ( ( ( F Fn ( V X. W ) /\ A e. V /\ B e. W ) /\ W e. X ) -> ( ( curry F ` A ) ` B ) = ( ( y e. W |-> ( F ` <. A , y >. ) ) ` B ) ) | 
						
							| 27 |  | opeq2 |  |-  ( y = B -> <. A , y >. = <. A , B >. ) | 
						
							| 28 | 27 | fveq2d |  |-  ( y = B -> ( F ` <. A , y >. ) = ( F ` <. A , B >. ) ) | 
						
							| 29 |  | eqid |  |-  ( y e. W |-> ( F ` <. A , y >. ) ) = ( y e. W |-> ( F ` <. A , y >. ) ) | 
						
							| 30 |  | fvex |  |-  ( F ` <. A , B >. ) e. _V | 
						
							| 31 | 28 29 30 | fvmpt |  |-  ( B e. W -> ( ( y e. W |-> ( F ` <. A , y >. ) ) ` B ) = ( F ` <. A , B >. ) ) | 
						
							| 32 |  | df-ov |  |-  ( A F B ) = ( F ` <. A , B >. ) | 
						
							| 33 | 31 32 | eqtr4di |  |-  ( B e. W -> ( ( y e. W |-> ( F ` <. A , y >. ) ) ` B ) = ( A F B ) ) | 
						
							| 34 | 33 | 3ad2ant3 |  |-  ( ( F Fn ( V X. W ) /\ A e. V /\ B e. W ) -> ( ( y e. W |-> ( F ` <. A , y >. ) ) ` B ) = ( A F B ) ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ( F Fn ( V X. W ) /\ A e. V /\ B e. W ) /\ W e. X ) -> ( ( y e. W |-> ( F ` <. A , y >. ) ) ` B ) = ( A F B ) ) | 
						
							| 36 | 26 35 | eqtrd |  |-  ( ( ( F Fn ( V X. W ) /\ A e. V /\ B e. W ) /\ W e. X ) -> ( ( curry F ` A ) ` B ) = ( A F B ) ) |