| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dffn5 |
⊢ ( 𝐹 Fn ( 𝑉 × 𝑊 ) ↔ 𝐹 = ( 𝑧 ∈ ( 𝑉 × 𝑊 ) ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
| 2 |
|
cureq |
⊢ ( 𝐹 = ( 𝑧 ∈ ( 𝑉 × 𝑊 ) ↦ ( 𝐹 ‘ 𝑧 ) ) → curry 𝐹 = curry ( 𝑧 ∈ ( 𝑉 × 𝑊 ) ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
| 3 |
1 2
|
sylbi |
⊢ ( 𝐹 Fn ( 𝑉 × 𝑊 ) → curry 𝐹 = curry ( 𝑧 ∈ ( 𝑉 × 𝑊 ) ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝐹 Fn ( 𝑉 × 𝑊 ) ∧ 𝐵 ∈ 𝑊 ) → curry 𝐹 = curry ( 𝑧 ∈ ( 𝑉 × 𝑊 ) ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
| 5 |
|
fveq2 |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) ) |
| 6 |
5
|
mpompt |
⊢ ( 𝑧 ∈ ( 𝑉 × 𝑊 ) ↦ ( 𝐹 ‘ 𝑧 ) ) = ( 𝑥 ∈ 𝑉 , 𝑦 ∈ 𝑊 ↦ ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) ) |
| 7 |
|
fvex |
⊢ ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) ∈ V |
| 8 |
7
|
rgen2w |
⊢ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑊 ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) ∈ V |
| 9 |
8
|
a1i |
⊢ ( ( 𝐹 Fn ( 𝑉 × 𝑊 ) ∧ 𝐵 ∈ 𝑊 ) → ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑊 ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) ∈ V ) |
| 10 |
|
ne0i |
⊢ ( 𝐵 ∈ 𝑊 → 𝑊 ≠ ∅ ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝐹 Fn ( 𝑉 × 𝑊 ) ∧ 𝐵 ∈ 𝑊 ) → 𝑊 ≠ ∅ ) |
| 12 |
6 9 11
|
mpocurryd |
⊢ ( ( 𝐹 Fn ( 𝑉 × 𝑊 ) ∧ 𝐵 ∈ 𝑊 ) → curry ( 𝑧 ∈ ( 𝑉 × 𝑊 ) ↦ ( 𝐹 ‘ 𝑧 ) ) = ( 𝑥 ∈ 𝑉 ↦ ( 𝑦 ∈ 𝑊 ↦ ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) ) ) ) |
| 13 |
4 12
|
eqtrd |
⊢ ( ( 𝐹 Fn ( 𝑉 × 𝑊 ) ∧ 𝐵 ∈ 𝑊 ) → curry 𝐹 = ( 𝑥 ∈ 𝑉 ↦ ( 𝑦 ∈ 𝑊 ↦ ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) ) ) ) |
| 14 |
13
|
3adant2 |
⊢ ( ( 𝐹 Fn ( 𝑉 × 𝑊 ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → curry 𝐹 = ( 𝑥 ∈ 𝑉 ↦ ( 𝑦 ∈ 𝑊 ↦ ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) ) ) ) |
| 15 |
14
|
fveq1d |
⊢ ( ( 𝐹 Fn ( 𝑉 × 𝑊 ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( curry 𝐹 ‘ 𝐴 ) = ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑦 ∈ 𝑊 ↦ ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) ) ) ‘ 𝐴 ) ) |
| 16 |
15
|
adantr |
⊢ ( ( ( 𝐹 Fn ( 𝑉 × 𝑊 ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑊 ∈ 𝑋 ) → ( curry 𝐹 ‘ 𝐴 ) = ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑦 ∈ 𝑊 ↦ ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) ) ) ‘ 𝐴 ) ) |
| 17 |
|
mptexg |
⊢ ( 𝑊 ∈ 𝑋 → ( 𝑦 ∈ 𝑊 ↦ ( 𝐹 ‘ 〈 𝐴 , 𝑦 〉 ) ) ∈ V ) |
| 18 |
|
opeq1 |
⊢ ( 𝑥 = 𝐴 → 〈 𝑥 , 𝑦 〉 = 〈 𝐴 , 𝑦 〉 ) |
| 19 |
18
|
fveq2d |
⊢ ( 𝑥 = 𝐴 → ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = ( 𝐹 ‘ 〈 𝐴 , 𝑦 〉 ) ) |
| 20 |
19
|
mpteq2dv |
⊢ ( 𝑥 = 𝐴 → ( 𝑦 ∈ 𝑊 ↦ ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) ) = ( 𝑦 ∈ 𝑊 ↦ ( 𝐹 ‘ 〈 𝐴 , 𝑦 〉 ) ) ) |
| 21 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑉 ↦ ( 𝑦 ∈ 𝑊 ↦ ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) ) ) = ( 𝑥 ∈ 𝑉 ↦ ( 𝑦 ∈ 𝑊 ↦ ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) ) ) |
| 22 |
20 21
|
fvmptg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝑊 ↦ ( 𝐹 ‘ 〈 𝐴 , 𝑦 〉 ) ) ∈ V ) → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑦 ∈ 𝑊 ↦ ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) ) ) ‘ 𝐴 ) = ( 𝑦 ∈ 𝑊 ↦ ( 𝐹 ‘ 〈 𝐴 , 𝑦 〉 ) ) ) |
| 23 |
17 22
|
sylan2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑊 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑦 ∈ 𝑊 ↦ ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) ) ) ‘ 𝐴 ) = ( 𝑦 ∈ 𝑊 ↦ ( 𝐹 ‘ 〈 𝐴 , 𝑦 〉 ) ) ) |
| 24 |
23
|
3ad2antl2 |
⊢ ( ( ( 𝐹 Fn ( 𝑉 × 𝑊 ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑊 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑦 ∈ 𝑊 ↦ ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) ) ) ‘ 𝐴 ) = ( 𝑦 ∈ 𝑊 ↦ ( 𝐹 ‘ 〈 𝐴 , 𝑦 〉 ) ) ) |
| 25 |
16 24
|
eqtrd |
⊢ ( ( ( 𝐹 Fn ( 𝑉 × 𝑊 ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑊 ∈ 𝑋 ) → ( curry 𝐹 ‘ 𝐴 ) = ( 𝑦 ∈ 𝑊 ↦ ( 𝐹 ‘ 〈 𝐴 , 𝑦 〉 ) ) ) |
| 26 |
25
|
fveq1d |
⊢ ( ( ( 𝐹 Fn ( 𝑉 × 𝑊 ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑊 ∈ 𝑋 ) → ( ( curry 𝐹 ‘ 𝐴 ) ‘ 𝐵 ) = ( ( 𝑦 ∈ 𝑊 ↦ ( 𝐹 ‘ 〈 𝐴 , 𝑦 〉 ) ) ‘ 𝐵 ) ) |
| 27 |
|
opeq2 |
⊢ ( 𝑦 = 𝐵 → 〈 𝐴 , 𝑦 〉 = 〈 𝐴 , 𝐵 〉 ) |
| 28 |
27
|
fveq2d |
⊢ ( 𝑦 = 𝐵 → ( 𝐹 ‘ 〈 𝐴 , 𝑦 〉 ) = ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) ) |
| 29 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑊 ↦ ( 𝐹 ‘ 〈 𝐴 , 𝑦 〉 ) ) = ( 𝑦 ∈ 𝑊 ↦ ( 𝐹 ‘ 〈 𝐴 , 𝑦 〉 ) ) |
| 30 |
|
fvex |
⊢ ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) ∈ V |
| 31 |
28 29 30
|
fvmpt |
⊢ ( 𝐵 ∈ 𝑊 → ( ( 𝑦 ∈ 𝑊 ↦ ( 𝐹 ‘ 〈 𝐴 , 𝑦 〉 ) ) ‘ 𝐵 ) = ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) ) |
| 32 |
|
df-ov |
⊢ ( 𝐴 𝐹 𝐵 ) = ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) |
| 33 |
31 32
|
eqtr4di |
⊢ ( 𝐵 ∈ 𝑊 → ( ( 𝑦 ∈ 𝑊 ↦ ( 𝐹 ‘ 〈 𝐴 , 𝑦 〉 ) ) ‘ 𝐵 ) = ( 𝐴 𝐹 𝐵 ) ) |
| 34 |
33
|
3ad2ant3 |
⊢ ( ( 𝐹 Fn ( 𝑉 × 𝑊 ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝑦 ∈ 𝑊 ↦ ( 𝐹 ‘ 〈 𝐴 , 𝑦 〉 ) ) ‘ 𝐵 ) = ( 𝐴 𝐹 𝐵 ) ) |
| 35 |
34
|
adantr |
⊢ ( ( ( 𝐹 Fn ( 𝑉 × 𝑊 ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑊 ∈ 𝑋 ) → ( ( 𝑦 ∈ 𝑊 ↦ ( 𝐹 ‘ 〈 𝐴 , 𝑦 〉 ) ) ‘ 𝐵 ) = ( 𝐴 𝐹 𝐵 ) ) |
| 36 |
26 35
|
eqtrd |
⊢ ( ( ( 𝐹 Fn ( 𝑉 × 𝑊 ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑊 ∈ 𝑋 ) → ( ( curry 𝐹 ‘ 𝐴 ) ‘ 𝐵 ) = ( 𝐴 𝐹 𝐵 ) ) |