Metamath Proof Explorer


Theorem mpocurryd

Description: The currying of an operation given in maps-to notation, splitting the operation (function of two arguments) into a function of the first argument, producing a function over the second argument. (Contributed by AV, 27-Oct-2019)

Ref Expression
Hypotheses mpocurryd.f 𝐹 = ( 𝑥𝑋 , 𝑦𝑌𝐶 )
mpocurryd.c ( 𝜑 → ∀ 𝑥𝑋𝑦𝑌 𝐶𝑉 )
mpocurryd.n ( 𝜑𝑌 ≠ ∅ )
Assertion mpocurryd ( 𝜑 → curry 𝐹 = ( 𝑥𝑋 ↦ ( 𝑦𝑌𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 mpocurryd.f 𝐹 = ( 𝑥𝑋 , 𝑦𝑌𝐶 )
2 mpocurryd.c ( 𝜑 → ∀ 𝑥𝑋𝑦𝑌 𝐶𝑉 )
3 mpocurryd.n ( 𝜑𝑌 ≠ ∅ )
4 df-cur curry 𝐹 = ( 𝑥 ∈ dom dom 𝐹 ↦ { ⟨ 𝑦 , 𝑧 ⟩ ∣ ⟨ 𝑥 , 𝑦𝐹 𝑧 } )
5 1 dmmpoga ( ∀ 𝑥𝑋𝑦𝑌 𝐶𝑉 → dom 𝐹 = ( 𝑋 × 𝑌 ) )
6 2 5 syl ( 𝜑 → dom 𝐹 = ( 𝑋 × 𝑌 ) )
7 6 dmeqd ( 𝜑 → dom dom 𝐹 = dom ( 𝑋 × 𝑌 ) )
8 dmxp ( 𝑌 ≠ ∅ → dom ( 𝑋 × 𝑌 ) = 𝑋 )
9 3 8 syl ( 𝜑 → dom ( 𝑋 × 𝑌 ) = 𝑋 )
10 7 9 eqtrd ( 𝜑 → dom dom 𝐹 = 𝑋 )
11 10 mpteq1d ( 𝜑 → ( 𝑥 ∈ dom dom 𝐹 ↦ { ⟨ 𝑦 , 𝑧 ⟩ ∣ ⟨ 𝑥 , 𝑦𝐹 𝑧 } ) = ( 𝑥𝑋 ↦ { ⟨ 𝑦 , 𝑧 ⟩ ∣ ⟨ 𝑥 , 𝑦𝐹 𝑧 } ) )
12 df-mpt ( 𝑦𝑌𝐶 ) = { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( 𝑦𝑌𝑧 = 𝐶 ) }
13 1 mpofun Fun 𝐹
14 funbrfv2b ( Fun 𝐹 → ( ⟨ 𝑥 , 𝑦𝐹 𝑧 ↔ ( ⟨ 𝑥 , 𝑦 ⟩ ∈ dom 𝐹 ∧ ( 𝐹 ‘ ⟨ 𝑥 , 𝑦 ⟩ ) = 𝑧 ) ) )
15 13 14 mp1i ( ( 𝜑𝑥𝑋 ) → ( ⟨ 𝑥 , 𝑦𝐹 𝑧 ↔ ( ⟨ 𝑥 , 𝑦 ⟩ ∈ dom 𝐹 ∧ ( 𝐹 ‘ ⟨ 𝑥 , 𝑦 ⟩ ) = 𝑧 ) ) )
16 6 adantr ( ( 𝜑𝑥𝑋 ) → dom 𝐹 = ( 𝑋 × 𝑌 ) )
17 16 eleq2d ( ( 𝜑𝑥𝑋 ) → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ dom 𝐹 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝑋 × 𝑌 ) ) )
18 opelxp ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝑋 × 𝑌 ) ↔ ( 𝑥𝑋𝑦𝑌 ) )
19 17 18 bitrdi ( ( 𝜑𝑥𝑋 ) → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ dom 𝐹 ↔ ( 𝑥𝑋𝑦𝑌 ) ) )
20 19 anbi1d ( ( 𝜑𝑥𝑋 ) → ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ dom 𝐹 ∧ ( 𝐹 ‘ ⟨ 𝑥 , 𝑦 ⟩ ) = 𝑧 ) ↔ ( ( 𝑥𝑋𝑦𝑌 ) ∧ ( 𝐹 ‘ ⟨ 𝑥 , 𝑦 ⟩ ) = 𝑧 ) ) )
21 an21 ( ( ( 𝑥𝑋𝑦𝑌 ) ∧ ( 𝐹 ‘ ⟨ 𝑥 , 𝑦 ⟩ ) = 𝑧 ) ↔ ( 𝑦𝑌 ∧ ( 𝑥𝑋 ∧ ( 𝐹 ‘ ⟨ 𝑥 , 𝑦 ⟩ ) = 𝑧 ) ) )
22 ibar ( 𝑥𝑋 → ( ( 𝐹 ‘ ⟨ 𝑥 , 𝑦 ⟩ ) = 𝑧 ↔ ( 𝑥𝑋 ∧ ( 𝐹 ‘ ⟨ 𝑥 , 𝑦 ⟩ ) = 𝑧 ) ) )
23 22 bicomd ( 𝑥𝑋 → ( ( 𝑥𝑋 ∧ ( 𝐹 ‘ ⟨ 𝑥 , 𝑦 ⟩ ) = 𝑧 ) ↔ ( 𝐹 ‘ ⟨ 𝑥 , 𝑦 ⟩ ) = 𝑧 ) )
24 23 adantl ( ( 𝜑𝑥𝑋 ) → ( ( 𝑥𝑋 ∧ ( 𝐹 ‘ ⟨ 𝑥 , 𝑦 ⟩ ) = 𝑧 ) ↔ ( 𝐹 ‘ ⟨ 𝑥 , 𝑦 ⟩ ) = 𝑧 ) )
25 24 adantr ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑦𝑌 ) → ( ( 𝑥𝑋 ∧ ( 𝐹 ‘ ⟨ 𝑥 , 𝑦 ⟩ ) = 𝑧 ) ↔ ( 𝐹 ‘ ⟨ 𝑥 , 𝑦 ⟩ ) = 𝑧 ) )
26 df-ov ( 𝑥 𝐹 𝑦 ) = ( 𝐹 ‘ ⟨ 𝑥 , 𝑦 ⟩ )
27 nfcv 𝑎 𝐶
28 nfcv 𝑏 𝐶
29 nfcv 𝑥 𝑏
30 nfcsb1v 𝑥 𝑎 / 𝑥 𝐶
31 29 30 nfcsbw 𝑥 𝑏 / 𝑦 𝑎 / 𝑥 𝐶
32 nfcsb1v 𝑦 𝑏 / 𝑦 𝑎 / 𝑥 𝐶
33 csbeq1a ( 𝑥 = 𝑎𝐶 = 𝑎 / 𝑥 𝐶 )
34 csbeq1a ( 𝑦 = 𝑏 𝑎 / 𝑥 𝐶 = 𝑏 / 𝑦 𝑎 / 𝑥 𝐶 )
35 33 34 sylan9eq ( ( 𝑥 = 𝑎𝑦 = 𝑏 ) → 𝐶 = 𝑏 / 𝑦 𝑎 / 𝑥 𝐶 )
36 27 28 31 32 35 cbvmpo ( 𝑥𝑋 , 𝑦𝑌𝐶 ) = ( 𝑎𝑋 , 𝑏𝑌 𝑏 / 𝑦 𝑎 / 𝑥 𝐶 )
37 1 36 eqtri 𝐹 = ( 𝑎𝑋 , 𝑏𝑌 𝑏 / 𝑦 𝑎 / 𝑥 𝐶 )
38 37 a1i ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑦𝑌 ) → 𝐹 = ( 𝑎𝑋 , 𝑏𝑌 𝑏 / 𝑦 𝑎 / 𝑥 𝐶 ) )
39 33 eqcomd ( 𝑥 = 𝑎 𝑎 / 𝑥 𝐶 = 𝐶 )
40 39 equcoms ( 𝑎 = 𝑥 𝑎 / 𝑥 𝐶 = 𝐶 )
41 40 csbeq2dv ( 𝑎 = 𝑥 𝑏 / 𝑦 𝑎 / 𝑥 𝐶 = 𝑏 / 𝑦 𝐶 )
42 csbeq1a ( 𝑦 = 𝑏𝐶 = 𝑏 / 𝑦 𝐶 )
43 42 eqcomd ( 𝑦 = 𝑏 𝑏 / 𝑦 𝐶 = 𝐶 )
44 43 equcoms ( 𝑏 = 𝑦 𝑏 / 𝑦 𝐶 = 𝐶 )
45 41 44 sylan9eq ( ( 𝑎 = 𝑥𝑏 = 𝑦 ) → 𝑏 / 𝑦 𝑎 / 𝑥 𝐶 = 𝐶 )
46 45 adantl ( ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑦𝑌 ) ∧ ( 𝑎 = 𝑥𝑏 = 𝑦 ) ) → 𝑏 / 𝑦 𝑎 / 𝑥 𝐶 = 𝐶 )
47 simpr ( ( 𝜑𝑥𝑋 ) → 𝑥𝑋 )
48 47 adantr ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑦𝑌 ) → 𝑥𝑋 )
49 simpr ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑦𝑌 ) → 𝑦𝑌 )
50 rsp2 ( ∀ 𝑥𝑋𝑦𝑌 𝐶𝑉 → ( ( 𝑥𝑋𝑦𝑌 ) → 𝐶𝑉 ) )
51 2 50 syl ( 𝜑 → ( ( 𝑥𝑋𝑦𝑌 ) → 𝐶𝑉 ) )
52 51 impl ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑦𝑌 ) → 𝐶𝑉 )
53 38 46 48 49 52 ovmpod ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑦𝑌 ) → ( 𝑥 𝐹 𝑦 ) = 𝐶 )
54 26 53 syl5eqr ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑦𝑌 ) → ( 𝐹 ‘ ⟨ 𝑥 , 𝑦 ⟩ ) = 𝐶 )
55 54 eqeq1d ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑦𝑌 ) → ( ( 𝐹 ‘ ⟨ 𝑥 , 𝑦 ⟩ ) = 𝑧𝐶 = 𝑧 ) )
56 eqcom ( 𝐶 = 𝑧𝑧 = 𝐶 )
57 55 56 bitrdi ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑦𝑌 ) → ( ( 𝐹 ‘ ⟨ 𝑥 , 𝑦 ⟩ ) = 𝑧𝑧 = 𝐶 ) )
58 25 57 bitrd ( ( ( 𝜑𝑥𝑋 ) ∧ 𝑦𝑌 ) → ( ( 𝑥𝑋 ∧ ( 𝐹 ‘ ⟨ 𝑥 , 𝑦 ⟩ ) = 𝑧 ) ↔ 𝑧 = 𝐶 ) )
59 58 pm5.32da ( ( 𝜑𝑥𝑋 ) → ( ( 𝑦𝑌 ∧ ( 𝑥𝑋 ∧ ( 𝐹 ‘ ⟨ 𝑥 , 𝑦 ⟩ ) = 𝑧 ) ) ↔ ( 𝑦𝑌𝑧 = 𝐶 ) ) )
60 21 59 syl5bb ( ( 𝜑𝑥𝑋 ) → ( ( ( 𝑥𝑋𝑦𝑌 ) ∧ ( 𝐹 ‘ ⟨ 𝑥 , 𝑦 ⟩ ) = 𝑧 ) ↔ ( 𝑦𝑌𝑧 = 𝐶 ) ) )
61 15 20 60 3bitrrd ( ( 𝜑𝑥𝑋 ) → ( ( 𝑦𝑌𝑧 = 𝐶 ) ↔ ⟨ 𝑥 , 𝑦𝐹 𝑧 ) )
62 61 opabbidv ( ( 𝜑𝑥𝑋 ) → { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( 𝑦𝑌𝑧 = 𝐶 ) } = { ⟨ 𝑦 , 𝑧 ⟩ ∣ ⟨ 𝑥 , 𝑦𝐹 𝑧 } )
63 12 62 syl5req ( ( 𝜑𝑥𝑋 ) → { ⟨ 𝑦 , 𝑧 ⟩ ∣ ⟨ 𝑥 , 𝑦𝐹 𝑧 } = ( 𝑦𝑌𝐶 ) )
64 63 mpteq2dva ( 𝜑 → ( 𝑥𝑋 ↦ { ⟨ 𝑦 , 𝑧 ⟩ ∣ ⟨ 𝑥 , 𝑦𝐹 𝑧 } ) = ( 𝑥𝑋 ↦ ( 𝑦𝑌𝐶 ) ) )
65 11 64 eqtrd ( 𝜑 → ( 𝑥 ∈ dom dom 𝐹 ↦ { ⟨ 𝑦 , 𝑧 ⟩ ∣ ⟨ 𝑥 , 𝑦𝐹 𝑧 } ) = ( 𝑥𝑋 ↦ ( 𝑦𝑌𝐶 ) ) )
66 4 65 syl5eq ( 𝜑 → curry 𝐹 = ( 𝑥𝑋 ↦ ( 𝑦𝑌𝐶 ) ) )