| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycpmconjs.c |  |-  C = ( M " ( `' # " { P } ) ) | 
						
							| 2 |  | cycpmconjs.s |  |-  S = ( SymGrp ` D ) | 
						
							| 3 |  | cycpmconjs.n |  |-  N = ( # ` D ) | 
						
							| 4 |  | cycpmconjs.m |  |-  M = ( toCyc ` D ) | 
						
							| 5 |  | cycpmgcl.b |  |-  B = ( Base ` S ) | 
						
							| 6 |  | simpr |  |-  ( ( ( ( ( D e. V /\ P e. ( 0 ... N ) ) /\ p e. C ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = p ) -> ( M ` u ) = p ) | 
						
							| 7 |  | simplll |  |-  ( ( ( ( D e. V /\ P e. ( 0 ... N ) ) /\ p e. C ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) -> D e. V ) | 
						
							| 8 |  | simpr |  |-  ( ( ( ( D e. V /\ P e. ( 0 ... N ) ) /\ p e. C ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) -> u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) | 
						
							| 9 | 8 | elin1d |  |-  ( ( ( ( D e. V /\ P e. ( 0 ... N ) ) /\ p e. C ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) -> u e. { w e. Word D | w : dom w -1-1-> D } ) | 
						
							| 10 |  | elrabi |  |-  ( u e. { w e. Word D | w : dom w -1-1-> D } -> u e. Word D ) | 
						
							| 11 | 9 10 | syl |  |-  ( ( ( ( D e. V /\ P e. ( 0 ... N ) ) /\ p e. C ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) -> u e. Word D ) | 
						
							| 12 |  | id |  |-  ( w = u -> w = u ) | 
						
							| 13 |  | dmeq |  |-  ( w = u -> dom w = dom u ) | 
						
							| 14 |  | eqidd |  |-  ( w = u -> D = D ) | 
						
							| 15 | 12 13 14 | f1eq123d |  |-  ( w = u -> ( w : dom w -1-1-> D <-> u : dom u -1-1-> D ) ) | 
						
							| 16 | 15 | elrab |  |-  ( u e. { w e. Word D | w : dom w -1-1-> D } <-> ( u e. Word D /\ u : dom u -1-1-> D ) ) | 
						
							| 17 | 16 | simprbi |  |-  ( u e. { w e. Word D | w : dom w -1-1-> D } -> u : dom u -1-1-> D ) | 
						
							| 18 | 9 17 | syl |  |-  ( ( ( ( D e. V /\ P e. ( 0 ... N ) ) /\ p e. C ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) -> u : dom u -1-1-> D ) | 
						
							| 19 | 4 7 11 18 2 | cycpmcl |  |-  ( ( ( ( D e. V /\ P e. ( 0 ... N ) ) /\ p e. C ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) -> ( M ` u ) e. ( Base ` S ) ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ( ( ( D e. V /\ P e. ( 0 ... N ) ) /\ p e. C ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = p ) -> ( M ` u ) e. ( Base ` S ) ) | 
						
							| 21 | 20 5 | eleqtrrdi |  |-  ( ( ( ( ( D e. V /\ P e. ( 0 ... N ) ) /\ p e. C ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = p ) -> ( M ` u ) e. B ) | 
						
							| 22 | 6 21 | eqeltrrd |  |-  ( ( ( ( ( D e. V /\ P e. ( 0 ... N ) ) /\ p e. C ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = p ) -> p e. B ) | 
						
							| 23 |  | nfcv |  |-  F/_ u M | 
						
							| 24 |  | simpl |  |-  ( ( D e. V /\ P e. ( 0 ... N ) ) -> D e. V ) | 
						
							| 25 | 4 2 5 | tocycf |  |-  ( D e. V -> M : { w e. Word D | w : dom w -1-1-> D } --> B ) | 
						
							| 26 |  | ffn |  |-  ( M : { w e. Word D | w : dom w -1-1-> D } --> B -> M Fn { w e. Word D | w : dom w -1-1-> D } ) | 
						
							| 27 | 24 25 26 | 3syl |  |-  ( ( D e. V /\ P e. ( 0 ... N ) ) -> M Fn { w e. Word D | w : dom w -1-1-> D } ) | 
						
							| 28 | 27 | adantr |  |-  ( ( ( D e. V /\ P e. ( 0 ... N ) ) /\ p e. C ) -> M Fn { w e. Word D | w : dom w -1-1-> D } ) | 
						
							| 29 | 1 | eleq2i |  |-  ( p e. C <-> p e. ( M " ( `' # " { P } ) ) ) | 
						
							| 30 | 29 | a1i |  |-  ( ( D e. V /\ P e. ( 0 ... N ) ) -> ( p e. C <-> p e. ( M " ( `' # " { P } ) ) ) ) | 
						
							| 31 | 30 | biimpa |  |-  ( ( ( D e. V /\ P e. ( 0 ... N ) ) /\ p e. C ) -> p e. ( M " ( `' # " { P } ) ) ) | 
						
							| 32 | 23 28 31 | fvelimad |  |-  ( ( ( D e. V /\ P e. ( 0 ... N ) ) /\ p e. C ) -> E. u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ( M ` u ) = p ) | 
						
							| 33 | 22 32 | r19.29a |  |-  ( ( ( D e. V /\ P e. ( 0 ... N ) ) /\ p e. C ) -> p e. B ) | 
						
							| 34 | 33 | ex |  |-  ( ( D e. V /\ P e. ( 0 ... N ) ) -> ( p e. C -> p e. B ) ) | 
						
							| 35 | 34 | ssrdv |  |-  ( ( D e. V /\ P e. ( 0 ... N ) ) -> C C_ B ) |