| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cycpmconjs.c |
|- C = ( M " ( `' # " { P } ) ) |
| 2 |
|
cycpmconjs.s |
|- S = ( SymGrp ` D ) |
| 3 |
|
cycpmconjs.n |
|- N = ( # ` D ) |
| 4 |
|
cycpmconjs.m |
|- M = ( toCyc ` D ) |
| 5 |
|
cycpmgcl.b |
|- B = ( Base ` S ) |
| 6 |
|
simpr |
|- ( ( ( ( ( D e. V /\ P e. ( 0 ... N ) ) /\ p e. C ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = p ) -> ( M ` u ) = p ) |
| 7 |
|
simplll |
|- ( ( ( ( D e. V /\ P e. ( 0 ... N ) ) /\ p e. C ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) -> D e. V ) |
| 8 |
|
simpr |
|- ( ( ( ( D e. V /\ P e. ( 0 ... N ) ) /\ p e. C ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) -> u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) |
| 9 |
8
|
elin1d |
|- ( ( ( ( D e. V /\ P e. ( 0 ... N ) ) /\ p e. C ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) -> u e. { w e. Word D | w : dom w -1-1-> D } ) |
| 10 |
|
elrabi |
|- ( u e. { w e. Word D | w : dom w -1-1-> D } -> u e. Word D ) |
| 11 |
9 10
|
syl |
|- ( ( ( ( D e. V /\ P e. ( 0 ... N ) ) /\ p e. C ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) -> u e. Word D ) |
| 12 |
|
id |
|- ( w = u -> w = u ) |
| 13 |
|
dmeq |
|- ( w = u -> dom w = dom u ) |
| 14 |
|
eqidd |
|- ( w = u -> D = D ) |
| 15 |
12 13 14
|
f1eq123d |
|- ( w = u -> ( w : dom w -1-1-> D <-> u : dom u -1-1-> D ) ) |
| 16 |
15
|
elrab |
|- ( u e. { w e. Word D | w : dom w -1-1-> D } <-> ( u e. Word D /\ u : dom u -1-1-> D ) ) |
| 17 |
16
|
simprbi |
|- ( u e. { w e. Word D | w : dom w -1-1-> D } -> u : dom u -1-1-> D ) |
| 18 |
9 17
|
syl |
|- ( ( ( ( D e. V /\ P e. ( 0 ... N ) ) /\ p e. C ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) -> u : dom u -1-1-> D ) |
| 19 |
4 7 11 18 2
|
cycpmcl |
|- ( ( ( ( D e. V /\ P e. ( 0 ... N ) ) /\ p e. C ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) -> ( M ` u ) e. ( Base ` S ) ) |
| 20 |
19
|
adantr |
|- ( ( ( ( ( D e. V /\ P e. ( 0 ... N ) ) /\ p e. C ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = p ) -> ( M ` u ) e. ( Base ` S ) ) |
| 21 |
20 5
|
eleqtrrdi |
|- ( ( ( ( ( D e. V /\ P e. ( 0 ... N ) ) /\ p e. C ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = p ) -> ( M ` u ) e. B ) |
| 22 |
6 21
|
eqeltrrd |
|- ( ( ( ( ( D e. V /\ P e. ( 0 ... N ) ) /\ p e. C ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = p ) -> p e. B ) |
| 23 |
|
nfcv |
|- F/_ u M |
| 24 |
|
simpl |
|- ( ( D e. V /\ P e. ( 0 ... N ) ) -> D e. V ) |
| 25 |
4 2 5
|
tocycf |
|- ( D e. V -> M : { w e. Word D | w : dom w -1-1-> D } --> B ) |
| 26 |
|
ffn |
|- ( M : { w e. Word D | w : dom w -1-1-> D } --> B -> M Fn { w e. Word D | w : dom w -1-1-> D } ) |
| 27 |
24 25 26
|
3syl |
|- ( ( D e. V /\ P e. ( 0 ... N ) ) -> M Fn { w e. Word D | w : dom w -1-1-> D } ) |
| 28 |
27
|
adantr |
|- ( ( ( D e. V /\ P e. ( 0 ... N ) ) /\ p e. C ) -> M Fn { w e. Word D | w : dom w -1-1-> D } ) |
| 29 |
1
|
eleq2i |
|- ( p e. C <-> p e. ( M " ( `' # " { P } ) ) ) |
| 30 |
29
|
a1i |
|- ( ( D e. V /\ P e. ( 0 ... N ) ) -> ( p e. C <-> p e. ( M " ( `' # " { P } ) ) ) ) |
| 31 |
30
|
biimpa |
|- ( ( ( D e. V /\ P e. ( 0 ... N ) ) /\ p e. C ) -> p e. ( M " ( `' # " { P } ) ) ) |
| 32 |
23 28 31
|
fvelimad |
|- ( ( ( D e. V /\ P e. ( 0 ... N ) ) /\ p e. C ) -> E. u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ( M ` u ) = p ) |
| 33 |
22 32
|
r19.29a |
|- ( ( ( D e. V /\ P e. ( 0 ... N ) ) /\ p e. C ) -> p e. B ) |
| 34 |
33
|
ex |
|- ( ( D e. V /\ P e. ( 0 ... N ) ) -> ( p e. C -> p e. B ) ) |
| 35 |
34
|
ssrdv |
|- ( ( D e. V /\ P e. ( 0 ... N ) ) -> C C_ B ) |