Metamath Proof Explorer


Theorem cycpmgcl

Description: Cyclic permutations are permutations, similar to cycpmcl , but where the set of cyclic permutations of length P is expressed in terms of a preimage. (Contributed by Thierry Arnoux, 13-Oct-2023)

Ref Expression
Hypotheses cycpmconjs.c 𝐶 = ( 𝑀 “ ( ♯ “ { 𝑃 } ) )
cycpmconjs.s 𝑆 = ( SymGrp ‘ 𝐷 )
cycpmconjs.n 𝑁 = ( ♯ ‘ 𝐷 )
cycpmconjs.m 𝑀 = ( toCyc ‘ 𝐷 )
cycpmgcl.b 𝐵 = ( Base ‘ 𝑆 )
Assertion cycpmgcl ( ( 𝐷𝑉𝑃 ∈ ( 0 ... 𝑁 ) ) → 𝐶𝐵 )

Proof

Step Hyp Ref Expression
1 cycpmconjs.c 𝐶 = ( 𝑀 “ ( ♯ “ { 𝑃 } ) )
2 cycpmconjs.s 𝑆 = ( SymGrp ‘ 𝐷 )
3 cycpmconjs.n 𝑁 = ( ♯ ‘ 𝐷 )
4 cycpmconjs.m 𝑀 = ( toCyc ‘ 𝐷 )
5 cycpmgcl.b 𝐵 = ( Base ‘ 𝑆 )
6 simpr ( ( ( ( ( 𝐷𝑉𝑃 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑝𝐶 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷𝑤 : dom 𝑤1-1𝐷 } ∩ ( ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀𝑢 ) = 𝑝 ) → ( 𝑀𝑢 ) = 𝑝 )
7 simplll ( ( ( ( 𝐷𝑉𝑃 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑝𝐶 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷𝑤 : dom 𝑤1-1𝐷 } ∩ ( ♯ “ { 𝑃 } ) ) ) → 𝐷𝑉 )
8 simpr ( ( ( ( 𝐷𝑉𝑃 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑝𝐶 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷𝑤 : dom 𝑤1-1𝐷 } ∩ ( ♯ “ { 𝑃 } ) ) ) → 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷𝑤 : dom 𝑤1-1𝐷 } ∩ ( ♯ “ { 𝑃 } ) ) )
9 8 elin1d ( ( ( ( 𝐷𝑉𝑃 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑝𝐶 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷𝑤 : dom 𝑤1-1𝐷 } ∩ ( ♯ “ { 𝑃 } ) ) ) → 𝑢 ∈ { 𝑤 ∈ Word 𝐷𝑤 : dom 𝑤1-1𝐷 } )
10 elrabi ( 𝑢 ∈ { 𝑤 ∈ Word 𝐷𝑤 : dom 𝑤1-1𝐷 } → 𝑢 ∈ Word 𝐷 )
11 9 10 syl ( ( ( ( 𝐷𝑉𝑃 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑝𝐶 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷𝑤 : dom 𝑤1-1𝐷 } ∩ ( ♯ “ { 𝑃 } ) ) ) → 𝑢 ∈ Word 𝐷 )
12 id ( 𝑤 = 𝑢𝑤 = 𝑢 )
13 dmeq ( 𝑤 = 𝑢 → dom 𝑤 = dom 𝑢 )
14 eqidd ( 𝑤 = 𝑢𝐷 = 𝐷 )
15 12 13 14 f1eq123d ( 𝑤 = 𝑢 → ( 𝑤 : dom 𝑤1-1𝐷𝑢 : dom 𝑢1-1𝐷 ) )
16 15 elrab ( 𝑢 ∈ { 𝑤 ∈ Word 𝐷𝑤 : dom 𝑤1-1𝐷 } ↔ ( 𝑢 ∈ Word 𝐷𝑢 : dom 𝑢1-1𝐷 ) )
17 16 simprbi ( 𝑢 ∈ { 𝑤 ∈ Word 𝐷𝑤 : dom 𝑤1-1𝐷 } → 𝑢 : dom 𝑢1-1𝐷 )
18 9 17 syl ( ( ( ( 𝐷𝑉𝑃 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑝𝐶 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷𝑤 : dom 𝑤1-1𝐷 } ∩ ( ♯ “ { 𝑃 } ) ) ) → 𝑢 : dom 𝑢1-1𝐷 )
19 4 7 11 18 2 cycpmcl ( ( ( ( 𝐷𝑉𝑃 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑝𝐶 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷𝑤 : dom 𝑤1-1𝐷 } ∩ ( ♯ “ { 𝑃 } ) ) ) → ( 𝑀𝑢 ) ∈ ( Base ‘ 𝑆 ) )
20 19 adantr ( ( ( ( ( 𝐷𝑉𝑃 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑝𝐶 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷𝑤 : dom 𝑤1-1𝐷 } ∩ ( ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀𝑢 ) = 𝑝 ) → ( 𝑀𝑢 ) ∈ ( Base ‘ 𝑆 ) )
21 20 5 eleqtrrdi ( ( ( ( ( 𝐷𝑉𝑃 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑝𝐶 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷𝑤 : dom 𝑤1-1𝐷 } ∩ ( ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀𝑢 ) = 𝑝 ) → ( 𝑀𝑢 ) ∈ 𝐵 )
22 6 21 eqeltrrd ( ( ( ( ( 𝐷𝑉𝑃 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑝𝐶 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷𝑤 : dom 𝑤1-1𝐷 } ∩ ( ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀𝑢 ) = 𝑝 ) → 𝑝𝐵 )
23 nfcv 𝑢 𝑀
24 simpl ( ( 𝐷𝑉𝑃 ∈ ( 0 ... 𝑁 ) ) → 𝐷𝑉 )
25 4 2 5 tocycf ( 𝐷𝑉𝑀 : { 𝑤 ∈ Word 𝐷𝑤 : dom 𝑤1-1𝐷 } ⟶ 𝐵 )
26 ffn ( 𝑀 : { 𝑤 ∈ Word 𝐷𝑤 : dom 𝑤1-1𝐷 } ⟶ 𝐵𝑀 Fn { 𝑤 ∈ Word 𝐷𝑤 : dom 𝑤1-1𝐷 } )
27 24 25 26 3syl ( ( 𝐷𝑉𝑃 ∈ ( 0 ... 𝑁 ) ) → 𝑀 Fn { 𝑤 ∈ Word 𝐷𝑤 : dom 𝑤1-1𝐷 } )
28 27 adantr ( ( ( 𝐷𝑉𝑃 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑝𝐶 ) → 𝑀 Fn { 𝑤 ∈ Word 𝐷𝑤 : dom 𝑤1-1𝐷 } )
29 1 eleq2i ( 𝑝𝐶𝑝 ∈ ( 𝑀 “ ( ♯ “ { 𝑃 } ) ) )
30 29 a1i ( ( 𝐷𝑉𝑃 ∈ ( 0 ... 𝑁 ) ) → ( 𝑝𝐶𝑝 ∈ ( 𝑀 “ ( ♯ “ { 𝑃 } ) ) ) )
31 30 biimpa ( ( ( 𝐷𝑉𝑃 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑝𝐶 ) → 𝑝 ∈ ( 𝑀 “ ( ♯ “ { 𝑃 } ) ) )
32 23 28 31 fvelimad ( ( ( 𝐷𝑉𝑃 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑝𝐶 ) → ∃ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷𝑤 : dom 𝑤1-1𝐷 } ∩ ( ♯ “ { 𝑃 } ) ) ( 𝑀𝑢 ) = 𝑝 )
33 22 32 r19.29a ( ( ( 𝐷𝑉𝑃 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑝𝐶 ) → 𝑝𝐵 )
34 33 ex ( ( 𝐷𝑉𝑃 ∈ ( 0 ... 𝑁 ) ) → ( 𝑝𝐶𝑝𝐵 ) )
35 34 ssrdv ( ( 𝐷𝑉𝑃 ∈ ( 0 ... 𝑁 ) ) → 𝐶𝐵 )