Step |
Hyp |
Ref |
Expression |
1 |
|
cycpmconjs.c |
⊢ 𝐶 = ( 𝑀 “ ( ◡ ♯ “ { 𝑃 } ) ) |
2 |
|
cycpmconjs.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
3 |
|
cycpmconjs.n |
⊢ 𝑁 = ( ♯ ‘ 𝐷 ) |
4 |
|
cycpmconjs.m |
⊢ 𝑀 = ( toCyc ‘ 𝐷 ) |
5 |
|
cycpmgcl.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
6 |
|
simpr |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑝 ∈ 𝐶 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑝 ) → ( 𝑀 ‘ 𝑢 ) = 𝑝 ) |
7 |
|
simplll |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑝 ∈ 𝐶 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) → 𝐷 ∈ 𝑉 ) |
8 |
|
simpr |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑝 ∈ 𝐶 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) → 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) |
9 |
8
|
elin1d |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑝 ∈ 𝐶 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) → 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
10 |
|
elrabi |
⊢ ( 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } → 𝑢 ∈ Word 𝐷 ) |
11 |
9 10
|
syl |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑝 ∈ 𝐶 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) → 𝑢 ∈ Word 𝐷 ) |
12 |
|
id |
⊢ ( 𝑤 = 𝑢 → 𝑤 = 𝑢 ) |
13 |
|
dmeq |
⊢ ( 𝑤 = 𝑢 → dom 𝑤 = dom 𝑢 ) |
14 |
|
eqidd |
⊢ ( 𝑤 = 𝑢 → 𝐷 = 𝐷 ) |
15 |
12 13 14
|
f1eq123d |
⊢ ( 𝑤 = 𝑢 → ( 𝑤 : dom 𝑤 –1-1→ 𝐷 ↔ 𝑢 : dom 𝑢 –1-1→ 𝐷 ) ) |
16 |
15
|
elrab |
⊢ ( 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ↔ ( 𝑢 ∈ Word 𝐷 ∧ 𝑢 : dom 𝑢 –1-1→ 𝐷 ) ) |
17 |
16
|
simprbi |
⊢ ( 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } → 𝑢 : dom 𝑢 –1-1→ 𝐷 ) |
18 |
9 17
|
syl |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑝 ∈ 𝐶 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) → 𝑢 : dom 𝑢 –1-1→ 𝐷 ) |
19 |
4 7 11 18 2
|
cycpmcl |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑝 ∈ 𝐶 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) → ( 𝑀 ‘ 𝑢 ) ∈ ( Base ‘ 𝑆 ) ) |
20 |
19
|
adantr |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑝 ∈ 𝐶 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑝 ) → ( 𝑀 ‘ 𝑢 ) ∈ ( Base ‘ 𝑆 ) ) |
21 |
20 5
|
eleqtrrdi |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑝 ∈ 𝐶 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑝 ) → ( 𝑀 ‘ 𝑢 ) ∈ 𝐵 ) |
22 |
6 21
|
eqeltrrd |
⊢ ( ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑝 ∈ 𝐶 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑝 ) → 𝑝 ∈ 𝐵 ) |
23 |
|
nfcv |
⊢ Ⅎ 𝑢 𝑀 |
24 |
|
simpl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ ( 0 ... 𝑁 ) ) → 𝐷 ∈ 𝑉 ) |
25 |
4 2 5
|
tocycf |
⊢ ( 𝐷 ∈ 𝑉 → 𝑀 : { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⟶ 𝐵 ) |
26 |
|
ffn |
⊢ ( 𝑀 : { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⟶ 𝐵 → 𝑀 Fn { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
27 |
24 25 26
|
3syl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ ( 0 ... 𝑁 ) ) → 𝑀 Fn { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
28 |
27
|
adantr |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑝 ∈ 𝐶 ) → 𝑀 Fn { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
29 |
1
|
eleq2i |
⊢ ( 𝑝 ∈ 𝐶 ↔ 𝑝 ∈ ( 𝑀 “ ( ◡ ♯ “ { 𝑃 } ) ) ) |
30 |
29
|
a1i |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ ( 0 ... 𝑁 ) ) → ( 𝑝 ∈ 𝐶 ↔ 𝑝 ∈ ( 𝑀 “ ( ◡ ♯ “ { 𝑃 } ) ) ) ) |
31 |
30
|
biimpa |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑝 ∈ 𝐶 ) → 𝑝 ∈ ( 𝑀 “ ( ◡ ♯ “ { 𝑃 } ) ) ) |
32 |
23 28 31
|
fvelimad |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑝 ∈ 𝐶 ) → ∃ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ( 𝑀 ‘ 𝑢 ) = 𝑝 ) |
33 |
22 32
|
r19.29a |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑝 ∈ 𝐶 ) → 𝑝 ∈ 𝐵 ) |
34 |
33
|
ex |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ ( 0 ... 𝑁 ) ) → ( 𝑝 ∈ 𝐶 → 𝑝 ∈ 𝐵 ) ) |
35 |
34
|
ssrdv |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ∈ ( 0 ... 𝑁 ) ) → 𝐶 ⊆ 𝐵 ) |