| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycpmconjs.c | ⊢ 𝐶  =  ( 𝑀  “  ( ◡ ♯  “  { 𝑃 } ) ) | 
						
							| 2 |  | cycpmconjs.s | ⊢ 𝑆  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 3 |  | cycpmconjs.n | ⊢ 𝑁  =  ( ♯ ‘ 𝐷 ) | 
						
							| 4 |  | cycpmconjs.m | ⊢ 𝑀  =  ( toCyc ‘ 𝐷 ) | 
						
							| 5 |  | cycpmgcl.b | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 6 |  | simpr | ⊢ ( ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  ( 0 ... 𝑁 ) )  ∧  𝑝  ∈  𝐶 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑝 )  →  ( 𝑀 ‘ 𝑢 )  =  𝑝 ) | 
						
							| 7 |  | simplll | ⊢ ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  ( 0 ... 𝑁 ) )  ∧  𝑝  ∈  𝐶 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  →  𝐷  ∈  𝑉 ) | 
						
							| 8 |  | simpr | ⊢ ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  ( 0 ... 𝑁 ) )  ∧  𝑝  ∈  𝐶 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  →  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) ) | 
						
							| 9 | 8 | elin1d | ⊢ ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  ( 0 ... 𝑁 ) )  ∧  𝑝  ∈  𝐶 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  →  𝑢  ∈  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ) | 
						
							| 10 |  | elrabi | ⊢ ( 𝑢  ∈  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  →  𝑢  ∈  Word  𝐷 ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  ( 0 ... 𝑁 ) )  ∧  𝑝  ∈  𝐶 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  →  𝑢  ∈  Word  𝐷 ) | 
						
							| 12 |  | id | ⊢ ( 𝑤  =  𝑢  →  𝑤  =  𝑢 ) | 
						
							| 13 |  | dmeq | ⊢ ( 𝑤  =  𝑢  →  dom  𝑤  =  dom  𝑢 ) | 
						
							| 14 |  | eqidd | ⊢ ( 𝑤  =  𝑢  →  𝐷  =  𝐷 ) | 
						
							| 15 | 12 13 14 | f1eq123d | ⊢ ( 𝑤  =  𝑢  →  ( 𝑤 : dom  𝑤 –1-1→ 𝐷  ↔  𝑢 : dom  𝑢 –1-1→ 𝐷 ) ) | 
						
							| 16 | 15 | elrab | ⊢ ( 𝑢  ∈  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ↔  ( 𝑢  ∈  Word  𝐷  ∧  𝑢 : dom  𝑢 –1-1→ 𝐷 ) ) | 
						
							| 17 | 16 | simprbi | ⊢ ( 𝑢  ∈  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  →  𝑢 : dom  𝑢 –1-1→ 𝐷 ) | 
						
							| 18 | 9 17 | syl | ⊢ ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  ( 0 ... 𝑁 ) )  ∧  𝑝  ∈  𝐶 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  →  𝑢 : dom  𝑢 –1-1→ 𝐷 ) | 
						
							| 19 | 4 7 11 18 2 | cycpmcl | ⊢ ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  ( 0 ... 𝑁 ) )  ∧  𝑝  ∈  𝐶 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  →  ( 𝑀 ‘ 𝑢 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  ( 0 ... 𝑁 ) )  ∧  𝑝  ∈  𝐶 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑝 )  →  ( 𝑀 ‘ 𝑢 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 21 | 20 5 | eleqtrrdi | ⊢ ( ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  ( 0 ... 𝑁 ) )  ∧  𝑝  ∈  𝐶 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑝 )  →  ( 𝑀 ‘ 𝑢 )  ∈  𝐵 ) | 
						
							| 22 | 6 21 | eqeltrrd | ⊢ ( ( ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  ( 0 ... 𝑁 ) )  ∧  𝑝  ∈  𝐶 )  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑝 )  →  𝑝  ∈  𝐵 ) | 
						
							| 23 |  | nfcv | ⊢ Ⅎ 𝑢 𝑀 | 
						
							| 24 |  | simpl | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  ( 0 ... 𝑁 ) )  →  𝐷  ∈  𝑉 ) | 
						
							| 25 | 4 2 5 | tocycf | ⊢ ( 𝐷  ∈  𝑉  →  𝑀 : { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ⟶ 𝐵 ) | 
						
							| 26 |  | ffn | ⊢ ( 𝑀 : { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ⟶ 𝐵  →  𝑀  Fn  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ) | 
						
							| 27 | 24 25 26 | 3syl | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  ( 0 ... 𝑁 ) )  →  𝑀  Fn  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  ( 0 ... 𝑁 ) )  ∧  𝑝  ∈  𝐶 )  →  𝑀  Fn  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ) | 
						
							| 29 | 1 | eleq2i | ⊢ ( 𝑝  ∈  𝐶  ↔  𝑝  ∈  ( 𝑀  “  ( ◡ ♯  “  { 𝑃 } ) ) ) | 
						
							| 30 | 29 | a1i | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑝  ∈  𝐶  ↔  𝑝  ∈  ( 𝑀  “  ( ◡ ♯  “  { 𝑃 } ) ) ) ) | 
						
							| 31 | 30 | biimpa | ⊢ ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  ( 0 ... 𝑁 ) )  ∧  𝑝  ∈  𝐶 )  →  𝑝  ∈  ( 𝑀  “  ( ◡ ♯  “  { 𝑃 } ) ) ) | 
						
							| 32 | 23 28 31 | fvelimad | ⊢ ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  ( 0 ... 𝑁 ) )  ∧  𝑝  ∈  𝐶 )  →  ∃ 𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) ( 𝑀 ‘ 𝑢 )  =  𝑝 ) | 
						
							| 33 | 22 32 | r19.29a | ⊢ ( ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  ( 0 ... 𝑁 ) )  ∧  𝑝  ∈  𝐶 )  →  𝑝  ∈  𝐵 ) | 
						
							| 34 | 33 | ex | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑝  ∈  𝐶  →  𝑝  ∈  𝐵 ) ) | 
						
							| 35 | 34 | ssrdv | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑃  ∈  ( 0 ... 𝑁 ) )  →  𝐶  ⊆  𝐵 ) |