| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycpmconjs.c | ⊢ 𝐶  =  ( 𝑀  “  ( ◡ ♯  “  { 𝑃 } ) ) | 
						
							| 2 |  | cycpmconjs.s | ⊢ 𝑆  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 3 |  | cycpmconjs.n | ⊢ 𝑁  =  ( ♯ ‘ 𝐷 ) | 
						
							| 4 |  | cycpmconjs.m | ⊢ 𝑀  =  ( toCyc ‘ 𝐷 ) | 
						
							| 5 |  | cycpmconjslem1.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑉 ) | 
						
							| 6 |  | cycpmconjslem1.w | ⊢ ( 𝜑  →  𝑊  ∈  Word  𝐷 ) | 
						
							| 7 |  | cycpmconjslem1.1 | ⊢ ( 𝜑  →  𝑊 : dom  𝑊 –1-1→ 𝐷 ) | 
						
							| 8 |  | cycpmconjslem1.2 | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  =  𝑃 ) | 
						
							| 9 |  | resco | ⊢ ( ( ◡ 𝑊  ∘  ( 𝑀 ‘ 𝑊 ) )  ↾  ran  𝑊 )  =  ( ◡ 𝑊  ∘  ( ( 𝑀 ‘ 𝑊 )  ↾  ran  𝑊 ) ) | 
						
							| 10 | 9 | coeq1i | ⊢ ( ( ( ◡ 𝑊  ∘  ( 𝑀 ‘ 𝑊 ) )  ↾  ran  𝑊 )  ∘  𝑊 )  =  ( ( ◡ 𝑊  ∘  ( ( 𝑀 ‘ 𝑊 )  ↾  ran  𝑊 ) )  ∘  𝑊 ) | 
						
							| 11 |  | ssid | ⊢ ran  𝑊  ⊆  ran  𝑊 | 
						
							| 12 |  | cores | ⊢ ( ran  𝑊  ⊆  ran  𝑊  →  ( ( ( ◡ 𝑊  ∘  ( 𝑀 ‘ 𝑊 ) )  ↾  ran  𝑊 )  ∘  𝑊 )  =  ( ( ◡ 𝑊  ∘  ( 𝑀 ‘ 𝑊 ) )  ∘  𝑊 ) ) | 
						
							| 13 | 11 12 | ax-mp | ⊢ ( ( ( ◡ 𝑊  ∘  ( 𝑀 ‘ 𝑊 ) )  ↾  ran  𝑊 )  ∘  𝑊 )  =  ( ( ◡ 𝑊  ∘  ( 𝑀 ‘ 𝑊 ) )  ∘  𝑊 ) | 
						
							| 14 |  | coass | ⊢ ( ( ◡ 𝑊  ∘  ( ( 𝑀 ‘ 𝑊 )  ↾  ran  𝑊 ) )  ∘  𝑊 )  =  ( ◡ 𝑊  ∘  ( ( ( 𝑀 ‘ 𝑊 )  ↾  ran  𝑊 )  ∘  𝑊 ) ) | 
						
							| 15 | 10 13 14 | 3eqtr3i | ⊢ ( ( ◡ 𝑊  ∘  ( 𝑀 ‘ 𝑊 ) )  ∘  𝑊 )  =  ( ◡ 𝑊  ∘  ( ( ( 𝑀 ‘ 𝑊 )  ↾  ran  𝑊 )  ∘  𝑊 ) ) | 
						
							| 16 | 4 5 6 7 | tocycfvres1 | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑊 )  ↾  ran  𝑊 )  =  ( ( 𝑊  cyclShift  1 )  ∘  ◡ 𝑊 ) ) | 
						
							| 17 | 16 | coeq1d | ⊢ ( 𝜑  →  ( ( ( 𝑀 ‘ 𝑊 )  ↾  ran  𝑊 )  ∘  𝑊 )  =  ( ( ( 𝑊  cyclShift  1 )  ∘  ◡ 𝑊 )  ∘  𝑊 ) ) | 
						
							| 18 |  | coass | ⊢ ( ( ( 𝑊  cyclShift  1 )  ∘  ◡ 𝑊 )  ∘  𝑊 )  =  ( ( 𝑊  cyclShift  1 )  ∘  ( ◡ 𝑊  ∘  𝑊 ) ) | 
						
							| 19 |  | f1f1orn | ⊢ ( 𝑊 : dom  𝑊 –1-1→ 𝐷  →  𝑊 : dom  𝑊 –1-1-onto→ ran  𝑊 ) | 
						
							| 20 |  | f1ococnv1 | ⊢ ( 𝑊 : dom  𝑊 –1-1-onto→ ran  𝑊  →  ( ◡ 𝑊  ∘  𝑊 )  =  (  I   ↾  dom  𝑊 ) ) | 
						
							| 21 | 7 19 20 | 3syl | ⊢ ( 𝜑  →  ( ◡ 𝑊  ∘  𝑊 )  =  (  I   ↾  dom  𝑊 ) ) | 
						
							| 22 | 21 | coeq2d | ⊢ ( 𝜑  →  ( ( 𝑊  cyclShift  1 )  ∘  ( ◡ 𝑊  ∘  𝑊 ) )  =  ( ( 𝑊  cyclShift  1 )  ∘  (  I   ↾  dom  𝑊 ) ) ) | 
						
							| 23 |  | coires1 | ⊢ ( ( 𝑊  cyclShift  1 )  ∘  (  I   ↾  dom  𝑊 ) )  =  ( ( 𝑊  cyclShift  1 )  ↾  dom  𝑊 ) | 
						
							| 24 | 22 23 | eqtr2di | ⊢ ( 𝜑  →  ( ( 𝑊  cyclShift  1 )  ↾  dom  𝑊 )  =  ( ( 𝑊  cyclShift  1 )  ∘  ( ◡ 𝑊  ∘  𝑊 ) ) ) | 
						
							| 25 | 18 24 | eqtr4id | ⊢ ( 𝜑  →  ( ( ( 𝑊  cyclShift  1 )  ∘  ◡ 𝑊 )  ∘  𝑊 )  =  ( ( 𝑊  cyclShift  1 )  ↾  dom  𝑊 ) ) | 
						
							| 26 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 27 |  | cshwfn | ⊢ ( ( 𝑊  ∈  Word  𝐷  ∧  1  ∈  ℤ )  →  ( 𝑊  cyclShift  1 )  Fn  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 28 | 6 26 27 | syl2anc | ⊢ ( 𝜑  →  ( 𝑊  cyclShift  1 )  Fn  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 29 |  | wrddm | ⊢ ( 𝑊  ∈  Word  𝐷  →  dom  𝑊  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 30 | 6 29 | syl | ⊢ ( 𝜑  →  dom  𝑊  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 31 | 30 | fneq2d | ⊢ ( 𝜑  →  ( ( 𝑊  cyclShift  1 )  Fn  dom  𝑊  ↔  ( 𝑊  cyclShift  1 )  Fn  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 32 | 28 31 | mpbird | ⊢ ( 𝜑  →  ( 𝑊  cyclShift  1 )  Fn  dom  𝑊 ) | 
						
							| 33 |  | fnresdm | ⊢ ( ( 𝑊  cyclShift  1 )  Fn  dom  𝑊  →  ( ( 𝑊  cyclShift  1 )  ↾  dom  𝑊 )  =  ( 𝑊  cyclShift  1 ) ) | 
						
							| 34 | 32 33 | syl | ⊢ ( 𝜑  →  ( ( 𝑊  cyclShift  1 )  ↾  dom  𝑊 )  =  ( 𝑊  cyclShift  1 ) ) | 
						
							| 35 | 17 25 34 | 3eqtrd | ⊢ ( 𝜑  →  ( ( ( 𝑀 ‘ 𝑊 )  ↾  ran  𝑊 )  ∘  𝑊 )  =  ( 𝑊  cyclShift  1 ) ) | 
						
							| 36 | 35 | coeq2d | ⊢ ( 𝜑  →  ( ◡ 𝑊  ∘  ( ( ( 𝑀 ‘ 𝑊 )  ↾  ran  𝑊 )  ∘  𝑊 ) )  =  ( ◡ 𝑊  ∘  ( 𝑊  cyclShift  1 ) ) ) | 
						
							| 37 | 15 36 | eqtrid | ⊢ ( 𝜑  →  ( ( ◡ 𝑊  ∘  ( 𝑀 ‘ 𝑊 ) )  ∘  𝑊 )  =  ( ◡ 𝑊  ∘  ( 𝑊  cyclShift  1 ) ) ) | 
						
							| 38 |  | wrdfn | ⊢ ( 𝑊  ∈  Word  𝐷  →  𝑊  Fn  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 39 | 6 38 | syl | ⊢ ( 𝜑  →  𝑊  Fn  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 40 |  | df-f | ⊢ ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ran  𝑊  ↔  ( 𝑊  Fn  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∧  ran  𝑊  ⊆  ran  𝑊 ) ) | 
						
							| 41 | 39 11 40 | sylanblrc | ⊢ ( 𝜑  →  𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ran  𝑊 ) | 
						
							| 42 |  | iswrdi | ⊢ ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ran  𝑊  →  𝑊  ∈  Word  ran  𝑊 ) | 
						
							| 43 | 41 42 | syl | ⊢ ( 𝜑  →  𝑊  ∈  Word  ran  𝑊 ) | 
						
							| 44 |  | f1ocnv | ⊢ ( 𝑊 : dom  𝑊 –1-1-onto→ ran  𝑊  →  ◡ 𝑊 : ran  𝑊 –1-1-onto→ dom  𝑊 ) | 
						
							| 45 |  | f1of | ⊢ ( ◡ 𝑊 : ran  𝑊 –1-1-onto→ dom  𝑊  →  ◡ 𝑊 : ran  𝑊 ⟶ dom  𝑊 ) | 
						
							| 46 | 7 19 44 45 | 4syl | ⊢ ( 𝜑  →  ◡ 𝑊 : ran  𝑊 ⟶ dom  𝑊 ) | 
						
							| 47 |  | cshco | ⊢ ( ( 𝑊  ∈  Word  ran  𝑊  ∧  1  ∈  ℤ  ∧  ◡ 𝑊 : ran  𝑊 ⟶ dom  𝑊 )  →  ( ◡ 𝑊  ∘  ( 𝑊  cyclShift  1 ) )  =  ( ( ◡ 𝑊  ∘  𝑊 )  cyclShift  1 ) ) | 
						
							| 48 | 43 26 46 47 | syl3anc | ⊢ ( 𝜑  →  ( ◡ 𝑊  ∘  ( 𝑊  cyclShift  1 ) )  =  ( ( ◡ 𝑊  ∘  𝑊 )  cyclShift  1 ) ) | 
						
							| 49 | 8 | oveq2d | ⊢ ( 𝜑  →  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  =  ( 0 ..^ 𝑃 ) ) | 
						
							| 50 | 30 49 | eqtrd | ⊢ ( 𝜑  →  dom  𝑊  =  ( 0 ..^ 𝑃 ) ) | 
						
							| 51 | 50 | reseq2d | ⊢ ( 𝜑  →  (  I   ↾  dom  𝑊 )  =  (  I   ↾  ( 0 ..^ 𝑃 ) ) ) | 
						
							| 52 | 21 51 | eqtrd | ⊢ ( 𝜑  →  ( ◡ 𝑊  ∘  𝑊 )  =  (  I   ↾  ( 0 ..^ 𝑃 ) ) ) | 
						
							| 53 | 52 | oveq1d | ⊢ ( 𝜑  →  ( ( ◡ 𝑊  ∘  𝑊 )  cyclShift  1 )  =  ( (  I   ↾  ( 0 ..^ 𝑃 ) )  cyclShift  1 ) ) | 
						
							| 54 | 37 48 53 | 3eqtrd | ⊢ ( 𝜑  →  ( ( ◡ 𝑊  ∘  ( 𝑀 ‘ 𝑊 ) )  ∘  𝑊 )  =  ( (  I   ↾  ( 0 ..^ 𝑃 ) )  cyclShift  1 ) ) |