Step |
Hyp |
Ref |
Expression |
1 |
|
cycpmconjs.c |
⊢ 𝐶 = ( 𝑀 “ ( ◡ ♯ “ { 𝑃 } ) ) |
2 |
|
cycpmconjs.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
3 |
|
cycpmconjs.n |
⊢ 𝑁 = ( ♯ ‘ 𝐷 ) |
4 |
|
cycpmconjs.m |
⊢ 𝑀 = ( toCyc ‘ 𝐷 ) |
5 |
|
cycpmconjslem1.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
6 |
|
cycpmconjslem1.w |
⊢ ( 𝜑 → 𝑊 ∈ Word 𝐷 ) |
7 |
|
cycpmconjslem1.1 |
⊢ ( 𝜑 → 𝑊 : dom 𝑊 –1-1→ 𝐷 ) |
8 |
|
cycpmconjslem1.2 |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) = 𝑃 ) |
9 |
|
resco |
⊢ ( ( ◡ 𝑊 ∘ ( 𝑀 ‘ 𝑊 ) ) ↾ ran 𝑊 ) = ( ◡ 𝑊 ∘ ( ( 𝑀 ‘ 𝑊 ) ↾ ran 𝑊 ) ) |
10 |
9
|
coeq1i |
⊢ ( ( ( ◡ 𝑊 ∘ ( 𝑀 ‘ 𝑊 ) ) ↾ ran 𝑊 ) ∘ 𝑊 ) = ( ( ◡ 𝑊 ∘ ( ( 𝑀 ‘ 𝑊 ) ↾ ran 𝑊 ) ) ∘ 𝑊 ) |
11 |
|
ssid |
⊢ ran 𝑊 ⊆ ran 𝑊 |
12 |
|
cores |
⊢ ( ran 𝑊 ⊆ ran 𝑊 → ( ( ( ◡ 𝑊 ∘ ( 𝑀 ‘ 𝑊 ) ) ↾ ran 𝑊 ) ∘ 𝑊 ) = ( ( ◡ 𝑊 ∘ ( 𝑀 ‘ 𝑊 ) ) ∘ 𝑊 ) ) |
13 |
11 12
|
ax-mp |
⊢ ( ( ( ◡ 𝑊 ∘ ( 𝑀 ‘ 𝑊 ) ) ↾ ran 𝑊 ) ∘ 𝑊 ) = ( ( ◡ 𝑊 ∘ ( 𝑀 ‘ 𝑊 ) ) ∘ 𝑊 ) |
14 |
|
coass |
⊢ ( ( ◡ 𝑊 ∘ ( ( 𝑀 ‘ 𝑊 ) ↾ ran 𝑊 ) ) ∘ 𝑊 ) = ( ◡ 𝑊 ∘ ( ( ( 𝑀 ‘ 𝑊 ) ↾ ran 𝑊 ) ∘ 𝑊 ) ) |
15 |
10 13 14
|
3eqtr3i |
⊢ ( ( ◡ 𝑊 ∘ ( 𝑀 ‘ 𝑊 ) ) ∘ 𝑊 ) = ( ◡ 𝑊 ∘ ( ( ( 𝑀 ‘ 𝑊 ) ↾ ran 𝑊 ) ∘ 𝑊 ) ) |
16 |
4 5 6 7
|
tocycfvres1 |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑊 ) ↾ ran 𝑊 ) = ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) |
17 |
16
|
coeq1d |
⊢ ( 𝜑 → ( ( ( 𝑀 ‘ 𝑊 ) ↾ ran 𝑊 ) ∘ 𝑊 ) = ( ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ∘ 𝑊 ) ) |
18 |
|
coass |
⊢ ( ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ∘ 𝑊 ) = ( ( 𝑊 cyclShift 1 ) ∘ ( ◡ 𝑊 ∘ 𝑊 ) ) |
19 |
|
f1f1orn |
⊢ ( 𝑊 : dom 𝑊 –1-1→ 𝐷 → 𝑊 : dom 𝑊 –1-1-onto→ ran 𝑊 ) |
20 |
|
f1ococnv1 |
⊢ ( 𝑊 : dom 𝑊 –1-1-onto→ ran 𝑊 → ( ◡ 𝑊 ∘ 𝑊 ) = ( I ↾ dom 𝑊 ) ) |
21 |
7 19 20
|
3syl |
⊢ ( 𝜑 → ( ◡ 𝑊 ∘ 𝑊 ) = ( I ↾ dom 𝑊 ) ) |
22 |
21
|
coeq2d |
⊢ ( 𝜑 → ( ( 𝑊 cyclShift 1 ) ∘ ( ◡ 𝑊 ∘ 𝑊 ) ) = ( ( 𝑊 cyclShift 1 ) ∘ ( I ↾ dom 𝑊 ) ) ) |
23 |
|
coires1 |
⊢ ( ( 𝑊 cyclShift 1 ) ∘ ( I ↾ dom 𝑊 ) ) = ( ( 𝑊 cyclShift 1 ) ↾ dom 𝑊 ) |
24 |
22 23
|
eqtr2di |
⊢ ( 𝜑 → ( ( 𝑊 cyclShift 1 ) ↾ dom 𝑊 ) = ( ( 𝑊 cyclShift 1 ) ∘ ( ◡ 𝑊 ∘ 𝑊 ) ) ) |
25 |
18 24
|
eqtr4id |
⊢ ( 𝜑 → ( ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ∘ 𝑊 ) = ( ( 𝑊 cyclShift 1 ) ↾ dom 𝑊 ) ) |
26 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
27 |
|
cshwfn |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ ) → ( 𝑊 cyclShift 1 ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
28 |
6 26 27
|
syl2anc |
⊢ ( 𝜑 → ( 𝑊 cyclShift 1 ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
29 |
|
wrddm |
⊢ ( 𝑊 ∈ Word 𝐷 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
30 |
6 29
|
syl |
⊢ ( 𝜑 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
31 |
30
|
fneq2d |
⊢ ( 𝜑 → ( ( 𝑊 cyclShift 1 ) Fn dom 𝑊 ↔ ( 𝑊 cyclShift 1 ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
32 |
28 31
|
mpbird |
⊢ ( 𝜑 → ( 𝑊 cyclShift 1 ) Fn dom 𝑊 ) |
33 |
|
fnresdm |
⊢ ( ( 𝑊 cyclShift 1 ) Fn dom 𝑊 → ( ( 𝑊 cyclShift 1 ) ↾ dom 𝑊 ) = ( 𝑊 cyclShift 1 ) ) |
34 |
32 33
|
syl |
⊢ ( 𝜑 → ( ( 𝑊 cyclShift 1 ) ↾ dom 𝑊 ) = ( 𝑊 cyclShift 1 ) ) |
35 |
17 25 34
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑀 ‘ 𝑊 ) ↾ ran 𝑊 ) ∘ 𝑊 ) = ( 𝑊 cyclShift 1 ) ) |
36 |
35
|
coeq2d |
⊢ ( 𝜑 → ( ◡ 𝑊 ∘ ( ( ( 𝑀 ‘ 𝑊 ) ↾ ran 𝑊 ) ∘ 𝑊 ) ) = ( ◡ 𝑊 ∘ ( 𝑊 cyclShift 1 ) ) ) |
37 |
15 36
|
syl5eq |
⊢ ( 𝜑 → ( ( ◡ 𝑊 ∘ ( 𝑀 ‘ 𝑊 ) ) ∘ 𝑊 ) = ( ◡ 𝑊 ∘ ( 𝑊 cyclShift 1 ) ) ) |
38 |
|
wrdfn |
⊢ ( 𝑊 ∈ Word 𝐷 → 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
39 |
6 38
|
syl |
⊢ ( 𝜑 → 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
40 |
|
df-f |
⊢ ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ran 𝑊 ↔ ( 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ ran 𝑊 ⊆ ran 𝑊 ) ) |
41 |
39 11 40
|
sylanblrc |
⊢ ( 𝜑 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ran 𝑊 ) |
42 |
|
iswrdi |
⊢ ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ran 𝑊 → 𝑊 ∈ Word ran 𝑊 ) |
43 |
41 42
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Word ran 𝑊 ) |
44 |
|
f1ocnv |
⊢ ( 𝑊 : dom 𝑊 –1-1-onto→ ran 𝑊 → ◡ 𝑊 : ran 𝑊 –1-1-onto→ dom 𝑊 ) |
45 |
7 19 44
|
3syl |
⊢ ( 𝜑 → ◡ 𝑊 : ran 𝑊 –1-1-onto→ dom 𝑊 ) |
46 |
|
f1of |
⊢ ( ◡ 𝑊 : ran 𝑊 –1-1-onto→ dom 𝑊 → ◡ 𝑊 : ran 𝑊 ⟶ dom 𝑊 ) |
47 |
45 46
|
syl |
⊢ ( 𝜑 → ◡ 𝑊 : ran 𝑊 ⟶ dom 𝑊 ) |
48 |
|
cshco |
⊢ ( ( 𝑊 ∈ Word ran 𝑊 ∧ 1 ∈ ℤ ∧ ◡ 𝑊 : ran 𝑊 ⟶ dom 𝑊 ) → ( ◡ 𝑊 ∘ ( 𝑊 cyclShift 1 ) ) = ( ( ◡ 𝑊 ∘ 𝑊 ) cyclShift 1 ) ) |
49 |
43 26 47 48
|
syl3anc |
⊢ ( 𝜑 → ( ◡ 𝑊 ∘ ( 𝑊 cyclShift 1 ) ) = ( ( ◡ 𝑊 ∘ 𝑊 ) cyclShift 1 ) ) |
50 |
8
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ..^ 𝑃 ) ) |
51 |
30 50
|
eqtrd |
⊢ ( 𝜑 → dom 𝑊 = ( 0 ..^ 𝑃 ) ) |
52 |
51
|
reseq2d |
⊢ ( 𝜑 → ( I ↾ dom 𝑊 ) = ( I ↾ ( 0 ..^ 𝑃 ) ) ) |
53 |
21 52
|
eqtrd |
⊢ ( 𝜑 → ( ◡ 𝑊 ∘ 𝑊 ) = ( I ↾ ( 0 ..^ 𝑃 ) ) ) |
54 |
53
|
oveq1d |
⊢ ( 𝜑 → ( ( ◡ 𝑊 ∘ 𝑊 ) cyclShift 1 ) = ( ( I ↾ ( 0 ..^ 𝑃 ) ) cyclShift 1 ) ) |
55 |
37 49 54
|
3eqtrd |
⊢ ( 𝜑 → ( ( ◡ 𝑊 ∘ ( 𝑀 ‘ 𝑊 ) ) ∘ 𝑊 ) = ( ( I ↾ ( 0 ..^ 𝑃 ) ) cyclShift 1 ) ) |