| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cycpmconjs.c |
⊢ 𝐶 = ( 𝑀 “ ( ◡ ♯ “ { 𝑃 } ) ) |
| 2 |
|
cycpmconjs.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
| 3 |
|
cycpmconjs.n |
⊢ 𝑁 = ( ♯ ‘ 𝐷 ) |
| 4 |
|
cycpmconjs.m |
⊢ 𝑀 = ( toCyc ‘ 𝐷 ) |
| 5 |
|
cycpmconjslem1.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
| 6 |
|
cycpmconjslem1.w |
⊢ ( 𝜑 → 𝑊 ∈ Word 𝐷 ) |
| 7 |
|
cycpmconjslem1.1 |
⊢ ( 𝜑 → 𝑊 : dom 𝑊 –1-1→ 𝐷 ) |
| 8 |
|
cycpmconjslem1.2 |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) = 𝑃 ) |
| 9 |
|
resco |
⊢ ( ( ◡ 𝑊 ∘ ( 𝑀 ‘ 𝑊 ) ) ↾ ran 𝑊 ) = ( ◡ 𝑊 ∘ ( ( 𝑀 ‘ 𝑊 ) ↾ ran 𝑊 ) ) |
| 10 |
9
|
coeq1i |
⊢ ( ( ( ◡ 𝑊 ∘ ( 𝑀 ‘ 𝑊 ) ) ↾ ran 𝑊 ) ∘ 𝑊 ) = ( ( ◡ 𝑊 ∘ ( ( 𝑀 ‘ 𝑊 ) ↾ ran 𝑊 ) ) ∘ 𝑊 ) |
| 11 |
|
ssid |
⊢ ran 𝑊 ⊆ ran 𝑊 |
| 12 |
|
cores |
⊢ ( ran 𝑊 ⊆ ran 𝑊 → ( ( ( ◡ 𝑊 ∘ ( 𝑀 ‘ 𝑊 ) ) ↾ ran 𝑊 ) ∘ 𝑊 ) = ( ( ◡ 𝑊 ∘ ( 𝑀 ‘ 𝑊 ) ) ∘ 𝑊 ) ) |
| 13 |
11 12
|
ax-mp |
⊢ ( ( ( ◡ 𝑊 ∘ ( 𝑀 ‘ 𝑊 ) ) ↾ ran 𝑊 ) ∘ 𝑊 ) = ( ( ◡ 𝑊 ∘ ( 𝑀 ‘ 𝑊 ) ) ∘ 𝑊 ) |
| 14 |
|
coass |
⊢ ( ( ◡ 𝑊 ∘ ( ( 𝑀 ‘ 𝑊 ) ↾ ran 𝑊 ) ) ∘ 𝑊 ) = ( ◡ 𝑊 ∘ ( ( ( 𝑀 ‘ 𝑊 ) ↾ ran 𝑊 ) ∘ 𝑊 ) ) |
| 15 |
10 13 14
|
3eqtr3i |
⊢ ( ( ◡ 𝑊 ∘ ( 𝑀 ‘ 𝑊 ) ) ∘ 𝑊 ) = ( ◡ 𝑊 ∘ ( ( ( 𝑀 ‘ 𝑊 ) ↾ ran 𝑊 ) ∘ 𝑊 ) ) |
| 16 |
4 5 6 7
|
tocycfvres1 |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑊 ) ↾ ran 𝑊 ) = ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ) |
| 17 |
16
|
coeq1d |
⊢ ( 𝜑 → ( ( ( 𝑀 ‘ 𝑊 ) ↾ ran 𝑊 ) ∘ 𝑊 ) = ( ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ∘ 𝑊 ) ) |
| 18 |
|
coass |
⊢ ( ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ∘ 𝑊 ) = ( ( 𝑊 cyclShift 1 ) ∘ ( ◡ 𝑊 ∘ 𝑊 ) ) |
| 19 |
|
f1f1orn |
⊢ ( 𝑊 : dom 𝑊 –1-1→ 𝐷 → 𝑊 : dom 𝑊 –1-1-onto→ ran 𝑊 ) |
| 20 |
|
f1ococnv1 |
⊢ ( 𝑊 : dom 𝑊 –1-1-onto→ ran 𝑊 → ( ◡ 𝑊 ∘ 𝑊 ) = ( I ↾ dom 𝑊 ) ) |
| 21 |
7 19 20
|
3syl |
⊢ ( 𝜑 → ( ◡ 𝑊 ∘ 𝑊 ) = ( I ↾ dom 𝑊 ) ) |
| 22 |
21
|
coeq2d |
⊢ ( 𝜑 → ( ( 𝑊 cyclShift 1 ) ∘ ( ◡ 𝑊 ∘ 𝑊 ) ) = ( ( 𝑊 cyclShift 1 ) ∘ ( I ↾ dom 𝑊 ) ) ) |
| 23 |
|
coires1 |
⊢ ( ( 𝑊 cyclShift 1 ) ∘ ( I ↾ dom 𝑊 ) ) = ( ( 𝑊 cyclShift 1 ) ↾ dom 𝑊 ) |
| 24 |
22 23
|
eqtr2di |
⊢ ( 𝜑 → ( ( 𝑊 cyclShift 1 ) ↾ dom 𝑊 ) = ( ( 𝑊 cyclShift 1 ) ∘ ( ◡ 𝑊 ∘ 𝑊 ) ) ) |
| 25 |
18 24
|
eqtr4id |
⊢ ( 𝜑 → ( ( ( 𝑊 cyclShift 1 ) ∘ ◡ 𝑊 ) ∘ 𝑊 ) = ( ( 𝑊 cyclShift 1 ) ↾ dom 𝑊 ) ) |
| 26 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 27 |
|
cshwfn |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ ) → ( 𝑊 cyclShift 1 ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 28 |
6 26 27
|
syl2anc |
⊢ ( 𝜑 → ( 𝑊 cyclShift 1 ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 29 |
|
wrddm |
⊢ ( 𝑊 ∈ Word 𝐷 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 30 |
6 29
|
syl |
⊢ ( 𝜑 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 31 |
30
|
fneq2d |
⊢ ( 𝜑 → ( ( 𝑊 cyclShift 1 ) Fn dom 𝑊 ↔ ( 𝑊 cyclShift 1 ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 32 |
28 31
|
mpbird |
⊢ ( 𝜑 → ( 𝑊 cyclShift 1 ) Fn dom 𝑊 ) |
| 33 |
|
fnresdm |
⊢ ( ( 𝑊 cyclShift 1 ) Fn dom 𝑊 → ( ( 𝑊 cyclShift 1 ) ↾ dom 𝑊 ) = ( 𝑊 cyclShift 1 ) ) |
| 34 |
32 33
|
syl |
⊢ ( 𝜑 → ( ( 𝑊 cyclShift 1 ) ↾ dom 𝑊 ) = ( 𝑊 cyclShift 1 ) ) |
| 35 |
17 25 34
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑀 ‘ 𝑊 ) ↾ ran 𝑊 ) ∘ 𝑊 ) = ( 𝑊 cyclShift 1 ) ) |
| 36 |
35
|
coeq2d |
⊢ ( 𝜑 → ( ◡ 𝑊 ∘ ( ( ( 𝑀 ‘ 𝑊 ) ↾ ran 𝑊 ) ∘ 𝑊 ) ) = ( ◡ 𝑊 ∘ ( 𝑊 cyclShift 1 ) ) ) |
| 37 |
15 36
|
eqtrid |
⊢ ( 𝜑 → ( ( ◡ 𝑊 ∘ ( 𝑀 ‘ 𝑊 ) ) ∘ 𝑊 ) = ( ◡ 𝑊 ∘ ( 𝑊 cyclShift 1 ) ) ) |
| 38 |
|
wrdfn |
⊢ ( 𝑊 ∈ Word 𝐷 → 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 39 |
6 38
|
syl |
⊢ ( 𝜑 → 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 40 |
|
df-f |
⊢ ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ran 𝑊 ↔ ( 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ ran 𝑊 ⊆ ran 𝑊 ) ) |
| 41 |
39 11 40
|
sylanblrc |
⊢ ( 𝜑 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ran 𝑊 ) |
| 42 |
|
iswrdi |
⊢ ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ran 𝑊 → 𝑊 ∈ Word ran 𝑊 ) |
| 43 |
41 42
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Word ran 𝑊 ) |
| 44 |
|
f1ocnv |
⊢ ( 𝑊 : dom 𝑊 –1-1-onto→ ran 𝑊 → ◡ 𝑊 : ran 𝑊 –1-1-onto→ dom 𝑊 ) |
| 45 |
|
f1of |
⊢ ( ◡ 𝑊 : ran 𝑊 –1-1-onto→ dom 𝑊 → ◡ 𝑊 : ran 𝑊 ⟶ dom 𝑊 ) |
| 46 |
7 19 44 45
|
4syl |
⊢ ( 𝜑 → ◡ 𝑊 : ran 𝑊 ⟶ dom 𝑊 ) |
| 47 |
|
cshco |
⊢ ( ( 𝑊 ∈ Word ran 𝑊 ∧ 1 ∈ ℤ ∧ ◡ 𝑊 : ran 𝑊 ⟶ dom 𝑊 ) → ( ◡ 𝑊 ∘ ( 𝑊 cyclShift 1 ) ) = ( ( ◡ 𝑊 ∘ 𝑊 ) cyclShift 1 ) ) |
| 48 |
43 26 46 47
|
syl3anc |
⊢ ( 𝜑 → ( ◡ 𝑊 ∘ ( 𝑊 cyclShift 1 ) ) = ( ( ◡ 𝑊 ∘ 𝑊 ) cyclShift 1 ) ) |
| 49 |
8
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ..^ 𝑃 ) ) |
| 50 |
30 49
|
eqtrd |
⊢ ( 𝜑 → dom 𝑊 = ( 0 ..^ 𝑃 ) ) |
| 51 |
50
|
reseq2d |
⊢ ( 𝜑 → ( I ↾ dom 𝑊 ) = ( I ↾ ( 0 ..^ 𝑃 ) ) ) |
| 52 |
21 51
|
eqtrd |
⊢ ( 𝜑 → ( ◡ 𝑊 ∘ 𝑊 ) = ( I ↾ ( 0 ..^ 𝑃 ) ) ) |
| 53 |
52
|
oveq1d |
⊢ ( 𝜑 → ( ( ◡ 𝑊 ∘ 𝑊 ) cyclShift 1 ) = ( ( I ↾ ( 0 ..^ 𝑃 ) ) cyclShift 1 ) ) |
| 54 |
37 48 53
|
3eqtrd |
⊢ ( 𝜑 → ( ( ◡ 𝑊 ∘ ( 𝑀 ‘ 𝑊 ) ) ∘ 𝑊 ) = ( ( I ↾ ( 0 ..^ 𝑃 ) ) cyclShift 1 ) ) |