| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycpmconjs.c | ⊢ 𝐶  =  ( 𝑀  “  ( ◡ ♯  “  { 𝑃 } ) ) | 
						
							| 2 |  | cycpmconjs.s | ⊢ 𝑆  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 3 |  | cycpmconjs.n | ⊢ 𝑁  =  ( ♯ ‘ 𝐷 ) | 
						
							| 4 |  | cycpmconjs.m | ⊢ 𝑀  =  ( toCyc ‘ 𝐷 ) | 
						
							| 5 |  | cycpmconjs.b | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 6 |  | cycpmconjs.a | ⊢  +   =  ( +g ‘ 𝑆 ) | 
						
							| 7 |  | cycpmconjs.l | ⊢  −   =  ( -g ‘ 𝑆 ) | 
						
							| 8 |  | cycpmconjs.p | ⊢ ( 𝜑  →  𝑃  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 9 |  | cycpmconjs.d | ⊢ ( 𝜑  →  𝐷  ∈  Fin ) | 
						
							| 10 |  | cycpmconjs.q | ⊢ ( 𝜑  →  𝑄  ∈  𝐶 ) | 
						
							| 11 |  | fzofi | ⊢ ( 0 ..^ 𝑁 )  ∈  Fin | 
						
							| 12 |  | diffi | ⊢ ( ( 0 ..^ 𝑁 )  ∈  Fin  →  ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 )  ∈  Fin ) | 
						
							| 13 | 11 12 | mp1i | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 )  ∈  Fin ) | 
						
							| 14 |  | diffi | ⊢ ( 𝐷  ∈  Fin  →  ( 𝐷  ∖  ran  𝑢 )  ∈  Fin ) | 
						
							| 15 | 9 14 | syl | ⊢ ( 𝜑  →  ( 𝐷  ∖  ran  𝑢 )  ∈  Fin ) | 
						
							| 16 | 15 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  ( 𝐷  ∖  ran  𝑢 )  ∈  Fin ) | 
						
							| 17 |  | hashcl | ⊢ ( 𝐷  ∈  Fin  →  ( ♯ ‘ 𝐷 )  ∈  ℕ0 ) | 
						
							| 18 | 9 17 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐷 )  ∈  ℕ0 ) | 
						
							| 19 | 3 18 | eqeltrid | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 20 |  | hashfzo0 | ⊢ ( 𝑁  ∈  ℕ0  →  ( ♯ ‘ ( 0 ..^ 𝑁 ) )  =  𝑁 ) | 
						
							| 21 | 19 20 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 0 ..^ 𝑁 ) )  =  𝑁 ) | 
						
							| 22 | 21 3 | eqtrdi | ⊢ ( 𝜑  →  ( ♯ ‘ ( 0 ..^ 𝑁 ) )  =  ( ♯ ‘ 𝐷 ) ) | 
						
							| 23 | 22 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  ( ♯ ‘ ( 0 ..^ 𝑁 ) )  =  ( ♯ ‘ 𝐷 ) ) | 
						
							| 24 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) ) | 
						
							| 25 | 24 | elin1d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  𝑢  ∈  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ) | 
						
							| 26 |  | elrabi | ⊢ ( 𝑢  ∈  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  →  𝑢  ∈  Word  𝐷 ) | 
						
							| 27 |  | wrdfin | ⊢ ( 𝑢  ∈  Word  𝐷  →  𝑢  ∈  Fin ) | 
						
							| 28 | 25 26 27 | 3syl | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  𝑢  ∈  Fin ) | 
						
							| 29 |  | id | ⊢ ( 𝑤  =  𝑢  →  𝑤  =  𝑢 ) | 
						
							| 30 |  | dmeq | ⊢ ( 𝑤  =  𝑢  →  dom  𝑤  =  dom  𝑢 ) | 
						
							| 31 |  | eqidd | ⊢ ( 𝑤  =  𝑢  →  𝐷  =  𝐷 ) | 
						
							| 32 | 29 30 31 | f1eq123d | ⊢ ( 𝑤  =  𝑢  →  ( 𝑤 : dom  𝑤 –1-1→ 𝐷  ↔  𝑢 : dom  𝑢 –1-1→ 𝐷 ) ) | 
						
							| 33 | 32 | elrab | ⊢ ( 𝑢  ∈  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ↔  ( 𝑢  ∈  Word  𝐷  ∧  𝑢 : dom  𝑢 –1-1→ 𝐷 ) ) | 
						
							| 34 | 33 | simprbi | ⊢ ( 𝑢  ∈  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  →  𝑢 : dom  𝑢 –1-1→ 𝐷 ) | 
						
							| 35 | 25 34 | syl | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  𝑢 : dom  𝑢 –1-1→ 𝐷 ) | 
						
							| 36 |  | f1fun | ⊢ ( 𝑢 : dom  𝑢 –1-1→ 𝐷  →  Fun  𝑢 ) | 
						
							| 37 | 35 36 | syl | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  Fun  𝑢 ) | 
						
							| 38 |  | hashfun | ⊢ ( 𝑢  ∈  Fin  →  ( Fun  𝑢  ↔  ( ♯ ‘ 𝑢 )  =  ( ♯ ‘ dom  𝑢 ) ) ) | 
						
							| 39 | 38 | biimpa | ⊢ ( ( 𝑢  ∈  Fin  ∧  Fun  𝑢 )  →  ( ♯ ‘ 𝑢 )  =  ( ♯ ‘ dom  𝑢 ) ) | 
						
							| 40 | 28 37 39 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  ( ♯ ‘ 𝑢 )  =  ( ♯ ‘ dom  𝑢 ) ) | 
						
							| 41 | 24 | dmexd | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  dom  𝑢  ∈  V ) | 
						
							| 42 |  | hashf1rn | ⊢ ( ( dom  𝑢  ∈  V  ∧  𝑢 : dom  𝑢 –1-1→ 𝐷 )  →  ( ♯ ‘ 𝑢 )  =  ( ♯ ‘ ran  𝑢 ) ) | 
						
							| 43 | 41 35 42 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  ( ♯ ‘ 𝑢 )  =  ( ♯ ‘ ran  𝑢 ) ) | 
						
							| 44 | 40 43 | eqtr3d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  ( ♯ ‘ dom  𝑢 )  =  ( ♯ ‘ ran  𝑢 ) ) | 
						
							| 45 | 23 44 | oveq12d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  ( ( ♯ ‘ ( 0 ..^ 𝑁 ) )  −  ( ♯ ‘ dom  𝑢 ) )  =  ( ( ♯ ‘ 𝐷 )  −  ( ♯ ‘ ran  𝑢 ) ) ) | 
						
							| 46 | 11 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  ( 0 ..^ 𝑁 )  ∈  Fin ) | 
						
							| 47 |  | wrddm | ⊢ ( 𝑢  ∈  Word  𝐷  →  dom  𝑢  =  ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ) | 
						
							| 48 | 25 26 47 | 3syl | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  dom  𝑢  =  ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ) | 
						
							| 49 |  | hashcl | ⊢ ( 𝑢  ∈  Fin  →  ( ♯ ‘ 𝑢 )  ∈  ℕ0 ) | 
						
							| 50 | 25 26 27 49 | 4syl | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  ( ♯ ‘ 𝑢 )  ∈  ℕ0 ) | 
						
							| 51 | 50 | nn0zd | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  ( ♯ ‘ 𝑢 )  ∈  ℤ ) | 
						
							| 52 | 18 | nn0zd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐷 )  ∈  ℤ ) | 
						
							| 53 | 3 52 | eqeltrid | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 54 | 53 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  𝑁  ∈  ℤ ) | 
						
							| 55 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  𝐷  ∈  Fin ) | 
						
							| 56 |  | wrdf | ⊢ ( 𝑢  ∈  Word  𝐷  →  𝑢 : ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ⟶ 𝐷 ) | 
						
							| 57 | 56 | frnd | ⊢ ( 𝑢  ∈  Word  𝐷  →  ran  𝑢  ⊆  𝐷 ) | 
						
							| 58 | 25 26 57 | 3syl | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  ran  𝑢  ⊆  𝐷 ) | 
						
							| 59 |  | hashss | ⊢ ( ( 𝐷  ∈  Fin  ∧  ran  𝑢  ⊆  𝐷 )  →  ( ♯ ‘ ran  𝑢 )  ≤  ( ♯ ‘ 𝐷 ) ) | 
						
							| 60 | 55 58 59 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  ( ♯ ‘ ran  𝑢 )  ≤  ( ♯ ‘ 𝐷 ) ) | 
						
							| 61 | 3 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  𝑁  =  ( ♯ ‘ 𝐷 ) ) | 
						
							| 62 | 60 43 61 | 3brtr4d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  ( ♯ ‘ 𝑢 )  ≤  𝑁 ) | 
						
							| 63 |  | eluz1 | ⊢ ( ( ♯ ‘ 𝑢 )  ∈  ℤ  →  ( 𝑁  ∈  ( ℤ≥ ‘ ( ♯ ‘ 𝑢 ) )  ↔  ( 𝑁  ∈  ℤ  ∧  ( ♯ ‘ 𝑢 )  ≤  𝑁 ) ) ) | 
						
							| 64 | 63 | biimpar | ⊢ ( ( ( ♯ ‘ 𝑢 )  ∈  ℤ  ∧  ( 𝑁  ∈  ℤ  ∧  ( ♯ ‘ 𝑢 )  ≤  𝑁 ) )  →  𝑁  ∈  ( ℤ≥ ‘ ( ♯ ‘ 𝑢 ) ) ) | 
						
							| 65 | 51 54 62 64 | syl12anc | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  𝑁  ∈  ( ℤ≥ ‘ ( ♯ ‘ 𝑢 ) ) ) | 
						
							| 66 |  | fzoss2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ ( ♯ ‘ 𝑢 ) )  →  ( 0 ..^ ( ♯ ‘ 𝑢 ) )  ⊆  ( 0 ..^ 𝑁 ) ) | 
						
							| 67 | 65 66 | syl | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  ( 0 ..^ ( ♯ ‘ 𝑢 ) )  ⊆  ( 0 ..^ 𝑁 ) ) | 
						
							| 68 | 48 67 | eqsstrd | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  dom  𝑢  ⊆  ( 0 ..^ 𝑁 ) ) | 
						
							| 69 |  | hashssdif | ⊢ ( ( ( 0 ..^ 𝑁 )  ∈  Fin  ∧  dom  𝑢  ⊆  ( 0 ..^ 𝑁 ) )  →  ( ♯ ‘ ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) )  =  ( ( ♯ ‘ ( 0 ..^ 𝑁 ) )  −  ( ♯ ‘ dom  𝑢 ) ) ) | 
						
							| 70 | 46 68 69 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  ( ♯ ‘ ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) )  =  ( ( ♯ ‘ ( 0 ..^ 𝑁 ) )  −  ( ♯ ‘ dom  𝑢 ) ) ) | 
						
							| 71 |  | hashssdif | ⊢ ( ( 𝐷  ∈  Fin  ∧  ran  𝑢  ⊆  𝐷 )  →  ( ♯ ‘ ( 𝐷  ∖  ran  𝑢 ) )  =  ( ( ♯ ‘ 𝐷 )  −  ( ♯ ‘ ran  𝑢 ) ) ) | 
						
							| 72 | 55 58 71 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  ( ♯ ‘ ( 𝐷  ∖  ran  𝑢 ) )  =  ( ( ♯ ‘ 𝐷 )  −  ( ♯ ‘ ran  𝑢 ) ) ) | 
						
							| 73 | 45 70 72 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  ( ♯ ‘ ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) )  =  ( ♯ ‘ ( 𝐷  ∖  ran  𝑢 ) ) ) | 
						
							| 74 |  | hasheqf1o | ⊢ ( ( ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 )  ∈  Fin  ∧  ( 𝐷  ∖  ran  𝑢 )  ∈  Fin )  →  ( ( ♯ ‘ ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) )  =  ( ♯ ‘ ( 𝐷  ∖  ran  𝑢 ) )  ↔  ∃ 𝑓 𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) ) ) | 
						
							| 75 | 74 | biimpa | ⊢ ( ( ( ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 )  ∈  Fin  ∧  ( 𝐷  ∖  ran  𝑢 )  ∈  Fin )  ∧  ( ♯ ‘ ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) )  =  ( ♯ ‘ ( 𝐷  ∖  ran  𝑢 ) ) )  →  ∃ 𝑓 𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) ) | 
						
							| 76 | 13 16 73 75 | syl21anc | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  ∃ 𝑓 𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) ) | 
						
							| 77 | 35 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  𝑢 : dom  𝑢 –1-1→ 𝐷 ) | 
						
							| 78 |  | f1f1orn | ⊢ ( 𝑢 : dom  𝑢 –1-1→ 𝐷  →  𝑢 : dom  𝑢 –1-1-onto→ ran  𝑢 ) | 
						
							| 79 | 77 78 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  𝑢 : dom  𝑢 –1-1-onto→ ran  𝑢 ) | 
						
							| 80 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) ) | 
						
							| 81 |  | disjdif | ⊢ ( dom  𝑢  ∩  ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) )  =  ∅ | 
						
							| 82 | 81 | a1i | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( dom  𝑢  ∩  ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) )  =  ∅ ) | 
						
							| 83 |  | disjdif | ⊢ ( ran  𝑢  ∩  ( 𝐷  ∖  ran  𝑢 ) )  =  ∅ | 
						
							| 84 | 83 | a1i | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ran  𝑢  ∩  ( 𝐷  ∖  ran  𝑢 ) )  =  ∅ ) | 
						
							| 85 |  | f1oun | ⊢ ( ( ( 𝑢 : dom  𝑢 –1-1-onto→ ran  𝑢  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  ∧  ( ( dom  𝑢  ∩  ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) )  =  ∅  ∧  ( ran  𝑢  ∩  ( 𝐷  ∖  ran  𝑢 ) )  =  ∅ ) )  →  ( 𝑢  ∪  𝑓 ) : ( dom  𝑢  ∪  ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) ) –1-1-onto→ ( ran  𝑢  ∪  ( 𝐷  ∖  ran  𝑢 ) ) ) | 
						
							| 86 | 79 80 82 84 85 | syl22anc | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( 𝑢  ∪  𝑓 ) : ( dom  𝑢  ∪  ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) ) –1-1-onto→ ( ran  𝑢  ∪  ( 𝐷  ∖  ran  𝑢 ) ) ) | 
						
							| 87 |  | eqidd | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( 𝑢  ∪  𝑓 )  =  ( 𝑢  ∪  𝑓 ) ) | 
						
							| 88 | 68 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  dom  𝑢  ⊆  ( 0 ..^ 𝑁 ) ) | 
						
							| 89 |  | undif | ⊢ ( dom  𝑢  ⊆  ( 0 ..^ 𝑁 )  ↔  ( dom  𝑢  ∪  ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) )  =  ( 0 ..^ 𝑁 ) ) | 
						
							| 90 | 88 89 | sylib | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( dom  𝑢  ∪  ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) )  =  ( 0 ..^ 𝑁 ) ) | 
						
							| 91 |  | undif | ⊢ ( ran  𝑢  ⊆  𝐷  ↔  ( ran  𝑢  ∪  ( 𝐷  ∖  ran  𝑢 ) )  =  𝐷 ) | 
						
							| 92 | 58 91 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  ( ran  𝑢  ∪  ( 𝐷  ∖  ran  𝑢 ) )  =  𝐷 ) | 
						
							| 93 | 92 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ran  𝑢  ∪  ( 𝐷  ∖  ran  𝑢 ) )  =  𝐷 ) | 
						
							| 94 | 87 90 93 | f1oeq123d | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( 𝑢  ∪  𝑓 ) : ( dom  𝑢  ∪  ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) ) –1-1-onto→ ( ran  𝑢  ∪  ( 𝐷  ∖  ran  𝑢 ) )  ↔  ( 𝑢  ∪  𝑓 ) : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷 ) ) | 
						
							| 95 | 86 94 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( 𝑢  ∪  𝑓 ) : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷 ) | 
						
							| 96 |  | f1ocnv | ⊢ ( ( 𝑢  ∪  𝑓 ) : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷  →  ◡ ( 𝑢  ∪  𝑓 ) : 𝐷 –1-1-onto→ ( 0 ..^ 𝑁 ) ) | 
						
							| 97 | 95 96 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ◡ ( 𝑢  ∪  𝑓 ) : 𝐷 –1-1-onto→ ( 0 ..^ 𝑁 ) ) | 
						
							| 98 | 1 2 3 4 5 | cycpmgcl | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑃  ∈  ( 0 ... 𝑁 ) )  →  𝐶  ⊆  𝐵 ) | 
						
							| 99 | 9 8 98 | syl2anc | ⊢ ( 𝜑  →  𝐶  ⊆  𝐵 ) | 
						
							| 100 | 99 10 | sseldd | ⊢ ( 𝜑  →  𝑄  ∈  𝐵 ) | 
						
							| 101 | 2 5 | symgbasf1o | ⊢ ( 𝑄  ∈  𝐵  →  𝑄 : 𝐷 –1-1-onto→ 𝐷 ) | 
						
							| 102 | 100 101 | syl | ⊢ ( 𝜑  →  𝑄 : 𝐷 –1-1-onto→ 𝐷 ) | 
						
							| 103 | 102 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  𝑄 : 𝐷 –1-1-onto→ 𝐷 ) | 
						
							| 104 |  | f1oco | ⊢ ( ( ◡ ( 𝑢  ∪  𝑓 ) : 𝐷 –1-1-onto→ ( 0 ..^ 𝑁 )  ∧  𝑄 : 𝐷 –1-1-onto→ 𝐷 )  →  ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 ) : 𝐷 –1-1-onto→ ( 0 ..^ 𝑁 ) ) | 
						
							| 105 | 97 103 104 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 ) : 𝐷 –1-1-onto→ ( 0 ..^ 𝑁 ) ) | 
						
							| 106 |  | f1oco | ⊢ ( ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 ) : 𝐷 –1-1-onto→ ( 0 ..^ 𝑁 )  ∧  ( 𝑢  ∪  𝑓 ) : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷 )  →  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) ) : ( 0 ..^ 𝑁 ) –1-1-onto→ ( 0 ..^ 𝑁 ) ) | 
						
							| 107 | 105 95 106 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) ) : ( 0 ..^ 𝑁 ) –1-1-onto→ ( 0 ..^ 𝑁 ) ) | 
						
							| 108 |  | f1ofun | ⊢ ( ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) ) : ( 0 ..^ 𝑁 ) –1-1-onto→ ( 0 ..^ 𝑁 )  →  Fun  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) ) ) | 
						
							| 109 |  | funrel | ⊢ ( Fun  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) )  →  Rel  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) ) ) | 
						
							| 110 | 107 108 109 | 3syl | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  Rel  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) ) ) | 
						
							| 111 |  | f1odm | ⊢ ( ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) ) : ( 0 ..^ 𝑁 ) –1-1-onto→ ( 0 ..^ 𝑁 )  →  dom  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) )  =  ( 0 ..^ 𝑁 ) ) | 
						
							| 112 | 107 111 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  dom  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) )  =  ( 0 ..^ 𝑁 ) ) | 
						
							| 113 |  | fzosplit | ⊢ ( 𝑃  ∈  ( 0 ... 𝑁 )  →  ( 0 ..^ 𝑁 )  =  ( ( 0 ..^ 𝑃 )  ∪  ( 𝑃 ..^ 𝑁 ) ) ) | 
						
							| 114 | 8 113 | syl | ⊢ ( 𝜑  →  ( 0 ..^ 𝑁 )  =  ( ( 0 ..^ 𝑃 )  ∪  ( 𝑃 ..^ 𝑁 ) ) ) | 
						
							| 115 | 114 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( 0 ..^ 𝑁 )  =  ( ( 0 ..^ 𝑃 )  ∪  ( 𝑃 ..^ 𝑁 ) ) ) | 
						
							| 116 | 112 115 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  dom  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) )  =  ( ( 0 ..^ 𝑃 )  ∪  ( 𝑃 ..^ 𝑁 ) ) ) | 
						
							| 117 |  | fzodisj | ⊢ ( ( 0 ..^ 𝑃 )  ∩  ( 𝑃 ..^ 𝑁 ) )  =  ∅ | 
						
							| 118 |  | reldisjun | ⊢ ( ( Rel  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) )  ∧  dom  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) )  =  ( ( 0 ..^ 𝑃 )  ∪  ( 𝑃 ..^ 𝑁 ) )  ∧  ( ( 0 ..^ 𝑃 )  ∩  ( 𝑃 ..^ 𝑁 ) )  =  ∅ )  →  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) )  =  ( ( ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) )  ↾  ( 0 ..^ 𝑃 ) )  ∪  ( ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) )  ↾  ( 𝑃 ..^ 𝑁 ) ) ) ) | 
						
							| 119 | 117 118 | mp3an3 | ⊢ ( ( Rel  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) )  ∧  dom  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) )  =  ( ( 0 ..^ 𝑃 )  ∪  ( 𝑃 ..^ 𝑁 ) ) )  →  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) )  =  ( ( ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) )  ↾  ( 0 ..^ 𝑃 ) )  ∪  ( ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) )  ↾  ( 𝑃 ..^ 𝑁 ) ) ) ) | 
						
							| 120 | 110 116 119 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) )  =  ( ( ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) )  ↾  ( 0 ..^ 𝑃 ) )  ∪  ( ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) )  ↾  ( 𝑃 ..^ 𝑁 ) ) ) ) | 
						
							| 121 |  | resco | ⊢ ( ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) )  ↾  ( 0 ..^ 𝑃 ) )  =  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( ( 𝑢  ∪  𝑓 )  ↾  ( 0 ..^ 𝑃 ) ) ) | 
						
							| 122 | 121 | a1i | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) )  ↾  ( 0 ..^ 𝑃 ) )  =  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( ( 𝑢  ∪  𝑓 )  ↾  ( 0 ..^ 𝑃 ) ) ) ) | 
						
							| 123 | 25 26 | syl | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  𝑢  ∈  Word  𝐷 ) | 
						
							| 124 |  | wrdfn | ⊢ ( 𝑢  ∈  Word  𝐷  →  𝑢  Fn  ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ) | 
						
							| 125 | 123 124 | syl | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  𝑢  Fn  ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ) | 
						
							| 126 | 24 | elin2d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  𝑢  ∈  ( ◡ ♯  “  { 𝑃 } ) ) | 
						
							| 127 |  | hashf | ⊢ ♯ : V ⟶ ( ℕ0  ∪  { +∞ } ) | 
						
							| 128 |  | ffn | ⊢ ( ♯ : V ⟶ ( ℕ0  ∪  { +∞ } )  →  ♯  Fn  V ) | 
						
							| 129 |  | fniniseg | ⊢ ( ♯  Fn  V  →  ( 𝑢  ∈  ( ◡ ♯  “  { 𝑃 } )  ↔  ( 𝑢  ∈  V  ∧  ( ♯ ‘ 𝑢 )  =  𝑃 ) ) ) | 
						
							| 130 | 127 128 129 | mp2b | ⊢ ( 𝑢  ∈  ( ◡ ♯  “  { 𝑃 } )  ↔  ( 𝑢  ∈  V  ∧  ( ♯ ‘ 𝑢 )  =  𝑃 ) ) | 
						
							| 131 | 130 | simprbi | ⊢ ( 𝑢  ∈  ( ◡ ♯  “  { 𝑃 } )  →  ( ♯ ‘ 𝑢 )  =  𝑃 ) | 
						
							| 132 | 126 131 | syl | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  ( ♯ ‘ 𝑢 )  =  𝑃 ) | 
						
							| 133 | 132 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  ( 0 ..^ ( ♯ ‘ 𝑢 ) )  =  ( 0 ..^ 𝑃 ) ) | 
						
							| 134 | 133 | fneq2d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  ( 𝑢  Fn  ( 0 ..^ ( ♯ ‘ 𝑢 ) )  ↔  𝑢  Fn  ( 0 ..^ 𝑃 ) ) ) | 
						
							| 135 | 125 134 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  𝑢  Fn  ( 0 ..^ 𝑃 ) ) | 
						
							| 136 | 135 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  𝑢  Fn  ( 0 ..^ 𝑃 ) ) | 
						
							| 137 |  | f1ofn | ⊢ ( 𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 )  →  𝑓  Fn  ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) ) | 
						
							| 138 | 80 137 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  𝑓  Fn  ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) ) | 
						
							| 139 | 48 133 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  dom  𝑢  =  ( 0 ..^ 𝑃 ) ) | 
						
							| 140 | 139 | ineq1d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  ( dom  𝑢  ∩  ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) )  =  ( ( 0 ..^ 𝑃 )  ∩  ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) ) ) | 
						
							| 141 | 81 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  ( dom  𝑢  ∩  ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) )  =  ∅ ) | 
						
							| 142 | 140 141 | eqtr3d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  ( ( 0 ..^ 𝑃 )  ∩  ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) )  =  ∅ ) | 
						
							| 143 | 142 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( 0 ..^ 𝑃 )  ∩  ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) )  =  ∅ ) | 
						
							| 144 |  | fnunres1 | ⊢ ( ( 𝑢  Fn  ( 0 ..^ 𝑃 )  ∧  𝑓  Fn  ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 )  ∧  ( ( 0 ..^ 𝑃 )  ∩  ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) )  =  ∅ )  →  ( ( 𝑢  ∪  𝑓 )  ↾  ( 0 ..^ 𝑃 ) )  =  𝑢 ) | 
						
							| 145 | 136 138 143 144 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( 𝑢  ∪  𝑓 )  ↾  ( 0 ..^ 𝑃 ) )  =  𝑢 ) | 
						
							| 146 | 145 | coeq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( ( 𝑢  ∪  𝑓 )  ↾  ( 0 ..^ 𝑃 ) ) )  =  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  𝑢 ) ) | 
						
							| 147 |  | resco | ⊢ ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ↾  ran  𝑢 )  =  ( ◡ ( 𝑢  ∪  𝑓 )  ∘  ( 𝑄  ↾  ran  𝑢 ) ) | 
						
							| 148 |  | resco | ⊢ ( ( ◡ 𝑢  ∘  ( 𝑀 ‘ 𝑢 ) )  ↾  ran  𝑢 )  =  ( ◡ 𝑢  ∘  ( ( 𝑀 ‘ 𝑢 )  ↾  ran  𝑢 ) ) | 
						
							| 149 | 148 | a1i | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( ◡ 𝑢  ∘  ( 𝑀 ‘ 𝑢 ) )  ↾  ran  𝑢 )  =  ( ◡ 𝑢  ∘  ( ( 𝑀 ‘ 𝑢 )  ↾  ran  𝑢 ) ) ) | 
						
							| 150 |  | cnvun | ⊢ ◡ ( 𝑢  ∪  𝑓 )  =  ( ◡ 𝑢  ∪  ◡ 𝑓 ) | 
						
							| 151 | 150 | reseq1i | ⊢ ( ◡ ( 𝑢  ∪  𝑓 )  ↾  ran  𝑢 )  =  ( ( ◡ 𝑢  ∪  ◡ 𝑓 )  ↾  ran  𝑢 ) | 
						
							| 152 |  | f1ocnv | ⊢ ( 𝑢 : dom  𝑢 –1-1-onto→ ran  𝑢  →  ◡ 𝑢 : ran  𝑢 –1-1-onto→ dom  𝑢 ) | 
						
							| 153 |  | f1ofn | ⊢ ( ◡ 𝑢 : ran  𝑢 –1-1-onto→ dom  𝑢  →  ◡ 𝑢  Fn  ran  𝑢 ) | 
						
							| 154 | 77 78 152 153 | 4syl | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ◡ 𝑢  Fn  ran  𝑢 ) | 
						
							| 155 |  | f1ocnv | ⊢ ( 𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 )  →  ◡ 𝑓 : ( 𝐷  ∖  ran  𝑢 ) –1-1-onto→ ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) ) | 
						
							| 156 |  | f1ofn | ⊢ ( ◡ 𝑓 : ( 𝐷  ∖  ran  𝑢 ) –1-1-onto→ ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 )  →  ◡ 𝑓  Fn  ( 𝐷  ∖  ran  𝑢 ) ) | 
						
							| 157 | 80 155 156 | 3syl | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ◡ 𝑓  Fn  ( 𝐷  ∖  ran  𝑢 ) ) | 
						
							| 158 |  | fnunres1 | ⊢ ( ( ◡ 𝑢  Fn  ran  𝑢  ∧  ◡ 𝑓  Fn  ( 𝐷  ∖  ran  𝑢 )  ∧  ( ran  𝑢  ∩  ( 𝐷  ∖  ran  𝑢 ) )  =  ∅ )  →  ( ( ◡ 𝑢  ∪  ◡ 𝑓 )  ↾  ran  𝑢 )  =  ◡ 𝑢 ) | 
						
							| 159 | 154 157 84 158 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( ◡ 𝑢  ∪  ◡ 𝑓 )  ↾  ran  𝑢 )  =  ◡ 𝑢 ) | 
						
							| 160 | 151 159 | eqtr2id | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ◡ 𝑢  =  ( ◡ ( 𝑢  ∪  𝑓 )  ↾  ran  𝑢 ) ) | 
						
							| 161 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( 𝑀 ‘ 𝑢 )  =  𝑄 ) | 
						
							| 162 | 161 | reseq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( 𝑀 ‘ 𝑢 )  ↾  ran  𝑢 )  =  ( 𝑄  ↾  ran  𝑢 ) ) | 
						
							| 163 | 160 162 | coeq12d | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ◡ 𝑢  ∘  ( ( 𝑀 ‘ 𝑢 )  ↾  ran  𝑢 ) )  =  ( ( ◡ ( 𝑢  ∪  𝑓 )  ↾  ran  𝑢 )  ∘  ( 𝑄  ↾  ran  𝑢 ) ) ) | 
						
							| 164 | 55 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  𝐷  ∈  Fin ) | 
						
							| 165 | 123 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  𝑢  ∈  Word  𝐷 ) | 
						
							| 166 | 4 164 165 77 | tocycfvres1 | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( 𝑀 ‘ 𝑢 )  ↾  ran  𝑢 )  =  ( ( 𝑢  cyclShift  1 )  ∘  ◡ 𝑢 ) ) | 
						
							| 167 | 162 166 | eqtr3d | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( 𝑄  ↾  ran  𝑢 )  =  ( ( 𝑢  cyclShift  1 )  ∘  ◡ 𝑢 ) ) | 
						
							| 168 | 167 | rneqd | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ran  ( 𝑄  ↾  ran  𝑢 )  =  ran  ( ( 𝑢  cyclShift  1 )  ∘  ◡ 𝑢 ) ) | 
						
							| 169 |  | 1zzd | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  1  ∈  ℤ ) | 
						
							| 170 |  | cshf1o | ⊢ ( ( 𝑢  ∈  Word  𝐷  ∧  𝑢 : dom  𝑢 –1-1→ 𝐷  ∧  1  ∈  ℤ )  →  ( 𝑢  cyclShift  1 ) : dom  𝑢 –1-1-onto→ ran  𝑢 ) | 
						
							| 171 | 165 77 169 170 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( 𝑢  cyclShift  1 ) : dom  𝑢 –1-1-onto→ ran  𝑢 ) | 
						
							| 172 | 79 152 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ◡ 𝑢 : ran  𝑢 –1-1-onto→ dom  𝑢 ) | 
						
							| 173 |  | f1oco | ⊢ ( ( ( 𝑢  cyclShift  1 ) : dom  𝑢 –1-1-onto→ ran  𝑢  ∧  ◡ 𝑢 : ran  𝑢 –1-1-onto→ dom  𝑢 )  →  ( ( 𝑢  cyclShift  1 )  ∘  ◡ 𝑢 ) : ran  𝑢 –1-1-onto→ ran  𝑢 ) | 
						
							| 174 | 171 172 173 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( 𝑢  cyclShift  1 )  ∘  ◡ 𝑢 ) : ran  𝑢 –1-1-onto→ ran  𝑢 ) | 
						
							| 175 |  | f1ofo | ⊢ ( ( ( 𝑢  cyclShift  1 )  ∘  ◡ 𝑢 ) : ran  𝑢 –1-1-onto→ ran  𝑢  →  ( ( 𝑢  cyclShift  1 )  ∘  ◡ 𝑢 ) : ran  𝑢 –onto→ ran  𝑢 ) | 
						
							| 176 |  | forn | ⊢ ( ( ( 𝑢  cyclShift  1 )  ∘  ◡ 𝑢 ) : ran  𝑢 –onto→ ran  𝑢  →  ran  ( ( 𝑢  cyclShift  1 )  ∘  ◡ 𝑢 )  =  ran  𝑢 ) | 
						
							| 177 | 174 175 176 | 3syl | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ran  ( ( 𝑢  cyclShift  1 )  ∘  ◡ 𝑢 )  =  ran  𝑢 ) | 
						
							| 178 | 168 177 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ran  ( 𝑄  ↾  ran  𝑢 )  =  ran  𝑢 ) | 
						
							| 179 |  | ssid | ⊢ ran  𝑢  ⊆  ran  𝑢 | 
						
							| 180 | 178 179 | eqsstrdi | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ran  ( 𝑄  ↾  ran  𝑢 )  ⊆  ran  𝑢 ) | 
						
							| 181 |  | cores | ⊢ ( ran  ( 𝑄  ↾  ran  𝑢 )  ⊆  ran  𝑢  →  ( ( ◡ ( 𝑢  ∪  𝑓 )  ↾  ran  𝑢 )  ∘  ( 𝑄  ↾  ran  𝑢 ) )  =  ( ◡ ( 𝑢  ∪  𝑓 )  ∘  ( 𝑄  ↾  ran  𝑢 ) ) ) | 
						
							| 182 | 180 181 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( ◡ ( 𝑢  ∪  𝑓 )  ↾  ran  𝑢 )  ∘  ( 𝑄  ↾  ran  𝑢 ) )  =  ( ◡ ( 𝑢  ∪  𝑓 )  ∘  ( 𝑄  ↾  ran  𝑢 ) ) ) | 
						
							| 183 | 149 163 182 | 3eqtrrd | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ◡ ( 𝑢  ∪  𝑓 )  ∘  ( 𝑄  ↾  ran  𝑢 ) )  =  ( ( ◡ 𝑢  ∘  ( 𝑀 ‘ 𝑢 ) )  ↾  ran  𝑢 ) ) | 
						
							| 184 | 147 183 | eqtrid | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ↾  ran  𝑢 )  =  ( ( ◡ 𝑢  ∘  ( 𝑀 ‘ 𝑢 ) )  ↾  ran  𝑢 ) ) | 
						
							| 185 | 184 | coeq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ↾  ran  𝑢 )  ∘  𝑢 )  =  ( ( ( ◡ 𝑢  ∘  ( 𝑀 ‘ 𝑢 ) )  ↾  ran  𝑢 )  ∘  𝑢 ) ) | 
						
							| 186 |  | cores | ⊢ ( ran  𝑢  ⊆  ran  𝑢  →  ( ( ( ◡ 𝑢  ∘  ( 𝑀 ‘ 𝑢 ) )  ↾  ran  𝑢 )  ∘  𝑢 )  =  ( ( ◡ 𝑢  ∘  ( 𝑀 ‘ 𝑢 ) )  ∘  𝑢 ) ) | 
						
							| 187 | 179 186 | mp1i | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( ( ◡ 𝑢  ∘  ( 𝑀 ‘ 𝑢 ) )  ↾  ran  𝑢 )  ∘  𝑢 )  =  ( ( ◡ 𝑢  ∘  ( 𝑀 ‘ 𝑢 ) )  ∘  𝑢 ) ) | 
						
							| 188 | 185 187 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ↾  ran  𝑢 )  ∘  𝑢 )  =  ( ( ◡ 𝑢  ∘  ( 𝑀 ‘ 𝑢 ) )  ∘  𝑢 ) ) | 
						
							| 189 |  | cores | ⊢ ( ran  𝑢  ⊆  ran  𝑢  →  ( ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ↾  ran  𝑢 )  ∘  𝑢 )  =  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  𝑢 ) ) | 
						
							| 190 | 179 189 | mp1i | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ↾  ran  𝑢 )  ∘  𝑢 )  =  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  𝑢 ) ) | 
						
							| 191 | 132 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ♯ ‘ 𝑢 )  =  𝑃 ) | 
						
							| 192 | 1 2 3 4 164 165 77 191 | cycpmconjslem1 | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( ◡ 𝑢  ∘  ( 𝑀 ‘ 𝑢 ) )  ∘  𝑢 )  =  ( (  I   ↾  ( 0 ..^ 𝑃 ) )  cyclShift  1 ) ) | 
						
							| 193 | 188 190 192 | 3eqtr3d | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  𝑢 )  =  ( (  I   ↾  ( 0 ..^ 𝑃 ) )  cyclShift  1 ) ) | 
						
							| 194 | 122 146 193 | 3eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) )  ↾  ( 0 ..^ 𝑃 ) )  =  ( (  I   ↾  ( 0 ..^ 𝑃 ) )  cyclShift  1 ) ) | 
						
							| 195 |  | resco | ⊢ ( ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) )  ↾  ( 𝑃 ..^ 𝑁 ) )  =  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( ( 𝑢  ∪  𝑓 )  ↾  ( 𝑃 ..^ 𝑁 ) ) ) | 
						
							| 196 | 139 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  dom  𝑢  =  ( 0 ..^ 𝑃 ) ) | 
						
							| 197 | 196 | difeq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 )  =  ( ( 0 ..^ 𝑁 )  ∖  ( 0 ..^ 𝑃 ) ) ) | 
						
							| 198 |  | fzodif1 | ⊢ ( 𝑃  ∈  ( 0 ... 𝑁 )  →  ( ( 0 ..^ 𝑁 )  ∖  ( 0 ..^ 𝑃 ) )  =  ( 𝑃 ..^ 𝑁 ) ) | 
						
							| 199 | 8 198 | syl | ⊢ ( 𝜑  →  ( ( 0 ..^ 𝑁 )  ∖  ( 0 ..^ 𝑃 ) )  =  ( 𝑃 ..^ 𝑁 ) ) | 
						
							| 200 | 199 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( 0 ..^ 𝑁 )  ∖  ( 0 ..^ 𝑃 ) )  =  ( 𝑃 ..^ 𝑁 ) ) | 
						
							| 201 | 197 200 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 )  =  ( 𝑃 ..^ 𝑁 ) ) | 
						
							| 202 | 201 | reseq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( 𝑢  ∪  𝑓 )  ↾  ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) )  =  ( ( 𝑢  ∪  𝑓 )  ↾  ( 𝑃 ..^ 𝑁 ) ) ) | 
						
							| 203 |  | fnunres2 | ⊢ ( ( 𝑢  Fn  ( 0 ..^ 𝑃 )  ∧  𝑓  Fn  ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 )  ∧  ( ( 0 ..^ 𝑃 )  ∩  ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) )  =  ∅ )  →  ( ( 𝑢  ∪  𝑓 )  ↾  ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) )  =  𝑓 ) | 
						
							| 204 | 136 138 143 203 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( 𝑢  ∪  𝑓 )  ↾  ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) )  =  𝑓 ) | 
						
							| 205 | 202 204 | eqtr3d | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( 𝑢  ∪  𝑓 )  ↾  ( 𝑃 ..^ 𝑁 ) )  =  𝑓 ) | 
						
							| 206 | 205 | coeq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( ( 𝑢  ∪  𝑓 )  ↾  ( 𝑃 ..^ 𝑁 ) ) )  =  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  𝑓 ) ) | 
						
							| 207 | 195 206 | eqtrid | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) )  ↾  ( 𝑃 ..^ 𝑁 ) )  =  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  𝑓 ) ) | 
						
							| 208 | 150 | reseq1i | ⊢ ( ◡ ( 𝑢  ∪  𝑓 )  ↾  ( 𝐷  ∖  ran  𝑢 ) )  =  ( ( ◡ 𝑢  ∪  ◡ 𝑓 )  ↾  ( 𝐷  ∖  ran  𝑢 ) ) | 
						
							| 209 |  | fnunres2 | ⊢ ( ( ◡ 𝑢  Fn  ran  𝑢  ∧  ◡ 𝑓  Fn  ( 𝐷  ∖  ran  𝑢 )  ∧  ( ran  𝑢  ∩  ( 𝐷  ∖  ran  𝑢 ) )  =  ∅ )  →  ( ( ◡ 𝑢  ∪  ◡ 𝑓 )  ↾  ( 𝐷  ∖  ran  𝑢 ) )  =  ◡ 𝑓 ) | 
						
							| 210 | 154 157 84 209 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( ◡ 𝑢  ∪  ◡ 𝑓 )  ↾  ( 𝐷  ∖  ran  𝑢 ) )  =  ◡ 𝑓 ) | 
						
							| 211 | 208 210 | eqtrid | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ◡ ( 𝑢  ∪  𝑓 )  ↾  ( 𝐷  ∖  ran  𝑢 ) )  =  ◡ 𝑓 ) | 
						
							| 212 | 161 | reseq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( 𝑀 ‘ 𝑢 )  ↾  ( 𝐷  ∖  ran  𝑢 ) )  =  ( 𝑄  ↾  ( 𝐷  ∖  ran  𝑢 ) ) ) | 
						
							| 213 | 4 164 165 77 | tocycfvres2 | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( 𝑀 ‘ 𝑢 )  ↾  ( 𝐷  ∖  ran  𝑢 ) )  =  (  I   ↾  ( 𝐷  ∖  ran  𝑢 ) ) ) | 
						
							| 214 | 212 213 | eqtr3d | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( 𝑄  ↾  ( 𝐷  ∖  ran  𝑢 ) )  =  (  I   ↾  ( 𝐷  ∖  ran  𝑢 ) ) ) | 
						
							| 215 | 211 214 | coeq12d | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( ◡ ( 𝑢  ∪  𝑓 )  ↾  ( 𝐷  ∖  ran  𝑢 ) )  ∘  ( 𝑄  ↾  ( 𝐷  ∖  ran  𝑢 ) ) )  =  ( ◡ 𝑓  ∘  (  I   ↾  ( 𝐷  ∖  ran  𝑢 ) ) ) ) | 
						
							| 216 | 214 | rneqd | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ran  ( 𝑄  ↾  ( 𝐷  ∖  ran  𝑢 ) )  =  ran  (  I   ↾  ( 𝐷  ∖  ran  𝑢 ) ) ) | 
						
							| 217 |  | rnresi | ⊢ ran  (  I   ↾  ( 𝐷  ∖  ran  𝑢 ) )  =  ( 𝐷  ∖  ran  𝑢 ) | 
						
							| 218 | 217 | eqimssi | ⊢ ran  (  I   ↾  ( 𝐷  ∖  ran  𝑢 ) )  ⊆  ( 𝐷  ∖  ran  𝑢 ) | 
						
							| 219 | 216 218 | eqsstrdi | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ran  ( 𝑄  ↾  ( 𝐷  ∖  ran  𝑢 ) )  ⊆  ( 𝐷  ∖  ran  𝑢 ) ) | 
						
							| 220 |  | cores | ⊢ ( ran  ( 𝑄  ↾  ( 𝐷  ∖  ran  𝑢 ) )  ⊆  ( 𝐷  ∖  ran  𝑢 )  →  ( ( ◡ ( 𝑢  ∪  𝑓 )  ↾  ( 𝐷  ∖  ran  𝑢 ) )  ∘  ( 𝑄  ↾  ( 𝐷  ∖  ran  𝑢 ) ) )  =  ( ◡ ( 𝑢  ∪  𝑓 )  ∘  ( 𝑄  ↾  ( 𝐷  ∖  ran  𝑢 ) ) ) ) | 
						
							| 221 | 219 220 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( ◡ ( 𝑢  ∪  𝑓 )  ↾  ( 𝐷  ∖  ran  𝑢 ) )  ∘  ( 𝑄  ↾  ( 𝐷  ∖  ran  𝑢 ) ) )  =  ( ◡ ( 𝑢  ∪  𝑓 )  ∘  ( 𝑄  ↾  ( 𝐷  ∖  ran  𝑢 ) ) ) ) | 
						
							| 222 |  | resco | ⊢ ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ↾  ( 𝐷  ∖  ran  𝑢 ) )  =  ( ◡ ( 𝑢  ∪  𝑓 )  ∘  ( 𝑄  ↾  ( 𝐷  ∖  ran  𝑢 ) ) ) | 
						
							| 223 | 221 222 | eqtr4di | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( ◡ ( 𝑢  ∪  𝑓 )  ↾  ( 𝐷  ∖  ran  𝑢 ) )  ∘  ( 𝑄  ↾  ( 𝐷  ∖  ran  𝑢 ) ) )  =  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ↾  ( 𝐷  ∖  ran  𝑢 ) ) ) | 
						
							| 224 | 215 223 | eqtr3d | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ◡ 𝑓  ∘  (  I   ↾  ( 𝐷  ∖  ran  𝑢 ) ) )  =  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ↾  ( 𝐷  ∖  ran  𝑢 ) ) ) | 
						
							| 225 | 224 | coeq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( ◡ 𝑓  ∘  (  I   ↾  ( 𝐷  ∖  ran  𝑢 ) ) )  ∘  𝑓 )  =  ( ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ↾  ( 𝐷  ∖  ran  𝑢 ) )  ∘  𝑓 ) ) | 
						
							| 226 |  | f1of | ⊢ ( ◡ 𝑓 : ( 𝐷  ∖  ran  𝑢 ) –1-1-onto→ ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 )  →  ◡ 𝑓 : ( 𝐷  ∖  ran  𝑢 ) ⟶ ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) ) | 
						
							| 227 |  | fcoi1 | ⊢ ( ◡ 𝑓 : ( 𝐷  ∖  ran  𝑢 ) ⟶ ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 )  →  ( ◡ 𝑓  ∘  (  I   ↾  ( 𝐷  ∖  ran  𝑢 ) ) )  =  ◡ 𝑓 ) | 
						
							| 228 | 80 155 226 227 | 4syl | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ◡ 𝑓  ∘  (  I   ↾  ( 𝐷  ∖  ran  𝑢 ) ) )  =  ◡ 𝑓 ) | 
						
							| 229 | 228 | coeq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( ◡ 𝑓  ∘  (  I   ↾  ( 𝐷  ∖  ran  𝑢 ) ) )  ∘  𝑓 )  =  ( ◡ 𝑓  ∘  𝑓 ) ) | 
						
							| 230 |  | f1ococnv1 | ⊢ ( 𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 )  →  ( ◡ 𝑓  ∘  𝑓 )  =  (  I   ↾  ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) ) ) | 
						
							| 231 | 80 230 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ◡ 𝑓  ∘  𝑓 )  =  (  I   ↾  ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) ) ) | 
						
							| 232 | 201 | reseq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  (  I   ↾  ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) )  =  (  I   ↾  ( 𝑃 ..^ 𝑁 ) ) ) | 
						
							| 233 | 229 231 232 | 3eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( ◡ 𝑓  ∘  (  I   ↾  ( 𝐷  ∖  ran  𝑢 ) ) )  ∘  𝑓 )  =  (  I   ↾  ( 𝑃 ..^ 𝑁 ) ) ) | 
						
							| 234 |  | f1of | ⊢ ( 𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 )  →  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) ⟶ ( 𝐷  ∖  ran  𝑢 ) ) | 
						
							| 235 |  | frn | ⊢ ( 𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) ⟶ ( 𝐷  ∖  ran  𝑢 )  →  ran  𝑓  ⊆  ( 𝐷  ∖  ran  𝑢 ) ) | 
						
							| 236 |  | cores | ⊢ ( ran  𝑓  ⊆  ( 𝐷  ∖  ran  𝑢 )  →  ( ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ↾  ( 𝐷  ∖  ran  𝑢 ) )  ∘  𝑓 )  =  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  𝑓 ) ) | 
						
							| 237 | 80 234 235 236 | 4syl | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ↾  ( 𝐷  ∖  ran  𝑢 ) )  ∘  𝑓 )  =  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  𝑓 ) ) | 
						
							| 238 | 225 233 237 | 3eqtr3rd | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  𝑓 )  =  (  I   ↾  ( 𝑃 ..^ 𝑁 ) ) ) | 
						
							| 239 | 207 238 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) )  ↾  ( 𝑃 ..^ 𝑁 ) )  =  (  I   ↾  ( 𝑃 ..^ 𝑁 ) ) ) | 
						
							| 240 | 194 239 | uneq12d | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) )  ↾  ( 0 ..^ 𝑃 ) )  ∪  ( ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) )  ↾  ( 𝑃 ..^ 𝑁 ) ) )  =  ( ( (  I   ↾  ( 0 ..^ 𝑃 ) )  cyclShift  1 )  ∪  (  I   ↾  ( 𝑃 ..^ 𝑁 ) ) ) ) | 
						
							| 241 | 120 240 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) )  =  ( ( (  I   ↾  ( 0 ..^ 𝑃 ) )  cyclShift  1 )  ∪  (  I   ↾  ( 𝑃 ..^ 𝑁 ) ) ) ) | 
						
							| 242 |  | vex | ⊢ 𝑢  ∈  V | 
						
							| 243 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 244 | 242 243 | unex | ⊢ ( 𝑢  ∪  𝑓 )  ∈  V | 
						
							| 245 |  | f1oeq1 | ⊢ ( 𝑞  =  ( 𝑢  ∪  𝑓 )  →  ( 𝑞 : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷  ↔  ( 𝑢  ∪  𝑓 ) : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷 ) ) | 
						
							| 246 |  | cnveq | ⊢ ( 𝑞  =  ( 𝑢  ∪  𝑓 )  →  ◡ 𝑞  =  ◡ ( 𝑢  ∪  𝑓 ) ) | 
						
							| 247 | 246 | coeq1d | ⊢ ( 𝑞  =  ( 𝑢  ∪  𝑓 )  →  ( ◡ 𝑞  ∘  𝑄 )  =  ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 ) ) | 
						
							| 248 |  | id | ⊢ ( 𝑞  =  ( 𝑢  ∪  𝑓 )  →  𝑞  =  ( 𝑢  ∪  𝑓 ) ) | 
						
							| 249 | 247 248 | coeq12d | ⊢ ( 𝑞  =  ( 𝑢  ∪  𝑓 )  →  ( ( ◡ 𝑞  ∘  𝑄 )  ∘  𝑞 )  =  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) ) ) | 
						
							| 250 | 249 | eqeq1d | ⊢ ( 𝑞  =  ( 𝑢  ∪  𝑓 )  →  ( ( ( ◡ 𝑞  ∘  𝑄 )  ∘  𝑞 )  =  ( ( (  I   ↾  ( 0 ..^ 𝑃 ) )  cyclShift  1 )  ∪  (  I   ↾  ( 𝑃 ..^ 𝑁 ) ) )  ↔  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) )  =  ( ( (  I   ↾  ( 0 ..^ 𝑃 ) )  cyclShift  1 )  ∪  (  I   ↾  ( 𝑃 ..^ 𝑁 ) ) ) ) ) | 
						
							| 251 | 245 250 | anbi12d | ⊢ ( 𝑞  =  ( 𝑢  ∪  𝑓 )  →  ( ( 𝑞 : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷  ∧  ( ( ◡ 𝑞  ∘  𝑄 )  ∘  𝑞 )  =  ( ( (  I   ↾  ( 0 ..^ 𝑃 ) )  cyclShift  1 )  ∪  (  I   ↾  ( 𝑃 ..^ 𝑁 ) ) ) )  ↔  ( ( 𝑢  ∪  𝑓 ) : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷  ∧  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) )  =  ( ( (  I   ↾  ( 0 ..^ 𝑃 ) )  cyclShift  1 )  ∪  (  I   ↾  ( 𝑃 ..^ 𝑁 ) ) ) ) ) ) | 
						
							| 252 | 244 251 | spcev | ⊢ ( ( ( 𝑢  ∪  𝑓 ) : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷  ∧  ( ( ◡ ( 𝑢  ∪  𝑓 )  ∘  𝑄 )  ∘  ( 𝑢  ∪  𝑓 ) )  =  ( ( (  I   ↾  ( 0 ..^ 𝑃 ) )  cyclShift  1 )  ∪  (  I   ↾  ( 𝑃 ..^ 𝑁 ) ) ) )  →  ∃ 𝑞 ( 𝑞 : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷  ∧  ( ( ◡ 𝑞  ∘  𝑄 )  ∘  𝑞 )  =  ( ( (  I   ↾  ( 0 ..^ 𝑃 ) )  cyclShift  1 )  ∪  (  I   ↾  ( 𝑃 ..^ 𝑁 ) ) ) ) ) | 
						
							| 253 | 95 241 252 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  ∧  𝑓 : ( ( 0 ..^ 𝑁 )  ∖  dom  𝑢 ) –1-1-onto→ ( 𝐷  ∖  ran  𝑢 ) )  →  ∃ 𝑞 ( 𝑞 : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷  ∧  ( ( ◡ 𝑞  ∘  𝑄 )  ∘  𝑞 )  =  ( ( (  I   ↾  ( 0 ..^ 𝑃 ) )  cyclShift  1 )  ∪  (  I   ↾  ( 𝑃 ..^ 𝑁 ) ) ) ) ) | 
						
							| 254 | 76 253 | exlimddv | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) )  ∧  ( 𝑀 ‘ 𝑢 )  =  𝑄 )  →  ∃ 𝑞 ( 𝑞 : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷  ∧  ( ( ◡ 𝑞  ∘  𝑄 )  ∘  𝑞 )  =  ( ( (  I   ↾  ( 0 ..^ 𝑃 ) )  cyclShift  1 )  ∪  (  I   ↾  ( 𝑃 ..^ 𝑁 ) ) ) ) ) | 
						
							| 255 |  | nfcv | ⊢ Ⅎ 𝑢 𝑀 | 
						
							| 256 | 4 2 5 | tocycf | ⊢ ( 𝐷  ∈  Fin  →  𝑀 : { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ⟶ 𝐵 ) | 
						
							| 257 |  | ffn | ⊢ ( 𝑀 : { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ⟶ 𝐵  →  𝑀  Fn  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ) | 
						
							| 258 | 9 256 257 | 3syl | ⊢ ( 𝜑  →  𝑀  Fn  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ) | 
						
							| 259 | 10 1 | eleqtrdi | ⊢ ( 𝜑  →  𝑄  ∈  ( 𝑀  “  ( ◡ ♯  “  { 𝑃 } ) ) ) | 
						
							| 260 | 255 258 259 | fvelimad | ⊢ ( 𝜑  →  ∃ 𝑢  ∈  ( { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ∩  ( ◡ ♯  “  { 𝑃 } ) ) ( 𝑀 ‘ 𝑢 )  =  𝑄 ) | 
						
							| 261 | 254 260 | r19.29a | ⊢ ( 𝜑  →  ∃ 𝑞 ( 𝑞 : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷  ∧  ( ( ◡ 𝑞  ∘  𝑄 )  ∘  𝑞 )  =  ( ( (  I   ↾  ( 0 ..^ 𝑃 ) )  cyclShift  1 )  ∪  (  I   ↾  ( 𝑃 ..^ 𝑁 ) ) ) ) ) |