Step |
Hyp |
Ref |
Expression |
1 |
|
cycpmconjs.c |
⊢ 𝐶 = ( 𝑀 “ ( ◡ ♯ “ { 𝑃 } ) ) |
2 |
|
cycpmconjs.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
3 |
|
cycpmconjs.n |
⊢ 𝑁 = ( ♯ ‘ 𝐷 ) |
4 |
|
cycpmconjs.m |
⊢ 𝑀 = ( toCyc ‘ 𝐷 ) |
5 |
|
cycpmconjs.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
6 |
|
cycpmconjs.a |
⊢ + = ( +g ‘ 𝑆 ) |
7 |
|
cycpmconjs.l |
⊢ − = ( -g ‘ 𝑆 ) |
8 |
|
cycpmconjs.p |
⊢ ( 𝜑 → 𝑃 ∈ ( 0 ... 𝑁 ) ) |
9 |
|
cycpmconjs.d |
⊢ ( 𝜑 → 𝐷 ∈ Fin ) |
10 |
|
cycpmconjs.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐶 ) |
11 |
|
fzofi |
⊢ ( 0 ..^ 𝑁 ) ∈ Fin |
12 |
|
diffi |
⊢ ( ( 0 ..^ 𝑁 ) ∈ Fin → ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ∈ Fin ) |
13 |
11 12
|
mp1i |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ∈ Fin ) |
14 |
|
diffi |
⊢ ( 𝐷 ∈ Fin → ( 𝐷 ∖ ran 𝑢 ) ∈ Fin ) |
15 |
9 14
|
syl |
⊢ ( 𝜑 → ( 𝐷 ∖ ran 𝑢 ) ∈ Fin ) |
16 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( 𝐷 ∖ ran 𝑢 ) ∈ Fin ) |
17 |
|
hashcl |
⊢ ( 𝐷 ∈ Fin → ( ♯ ‘ 𝐷 ) ∈ ℕ0 ) |
18 |
9 17
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐷 ) ∈ ℕ0 ) |
19 |
3 18
|
eqeltrid |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
20 |
|
hashfzo0 |
⊢ ( 𝑁 ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = 𝑁 ) |
21 |
19 20
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = 𝑁 ) |
22 |
21 3
|
eqtrdi |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = ( ♯ ‘ 𝐷 ) ) |
23 |
22
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = ( ♯ ‘ 𝐷 ) ) |
24 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) |
25 |
24
|
elin1d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
26 |
|
elrabi |
⊢ ( 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } → 𝑢 ∈ Word 𝐷 ) |
27 |
|
wrdfin |
⊢ ( 𝑢 ∈ Word 𝐷 → 𝑢 ∈ Fin ) |
28 |
25 26 27
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → 𝑢 ∈ Fin ) |
29 |
|
id |
⊢ ( 𝑤 = 𝑢 → 𝑤 = 𝑢 ) |
30 |
|
dmeq |
⊢ ( 𝑤 = 𝑢 → dom 𝑤 = dom 𝑢 ) |
31 |
|
eqidd |
⊢ ( 𝑤 = 𝑢 → 𝐷 = 𝐷 ) |
32 |
29 30 31
|
f1eq123d |
⊢ ( 𝑤 = 𝑢 → ( 𝑤 : dom 𝑤 –1-1→ 𝐷 ↔ 𝑢 : dom 𝑢 –1-1→ 𝐷 ) ) |
33 |
32
|
elrab |
⊢ ( 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ↔ ( 𝑢 ∈ Word 𝐷 ∧ 𝑢 : dom 𝑢 –1-1→ 𝐷 ) ) |
34 |
33
|
simprbi |
⊢ ( 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } → 𝑢 : dom 𝑢 –1-1→ 𝐷 ) |
35 |
25 34
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → 𝑢 : dom 𝑢 –1-1→ 𝐷 ) |
36 |
|
f1fun |
⊢ ( 𝑢 : dom 𝑢 –1-1→ 𝐷 → Fun 𝑢 ) |
37 |
35 36
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → Fun 𝑢 ) |
38 |
|
hashfun |
⊢ ( 𝑢 ∈ Fin → ( Fun 𝑢 ↔ ( ♯ ‘ 𝑢 ) = ( ♯ ‘ dom 𝑢 ) ) ) |
39 |
38
|
biimpa |
⊢ ( ( 𝑢 ∈ Fin ∧ Fun 𝑢 ) → ( ♯ ‘ 𝑢 ) = ( ♯ ‘ dom 𝑢 ) ) |
40 |
28 37 39
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( ♯ ‘ 𝑢 ) = ( ♯ ‘ dom 𝑢 ) ) |
41 |
24
|
dmexd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → dom 𝑢 ∈ V ) |
42 |
|
hashf1rn |
⊢ ( ( dom 𝑢 ∈ V ∧ 𝑢 : dom 𝑢 –1-1→ 𝐷 ) → ( ♯ ‘ 𝑢 ) = ( ♯ ‘ ran 𝑢 ) ) |
43 |
41 35 42
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( ♯ ‘ 𝑢 ) = ( ♯ ‘ ran 𝑢 ) ) |
44 |
40 43
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( ♯ ‘ dom 𝑢 ) = ( ♯ ‘ ran 𝑢 ) ) |
45 |
23 44
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( ( ♯ ‘ ( 0 ..^ 𝑁 ) ) − ( ♯ ‘ dom 𝑢 ) ) = ( ( ♯ ‘ 𝐷 ) − ( ♯ ‘ ran 𝑢 ) ) ) |
46 |
11
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( 0 ..^ 𝑁 ) ∈ Fin ) |
47 |
|
wrddm |
⊢ ( 𝑢 ∈ Word 𝐷 → dom 𝑢 = ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ) |
48 |
25 26 47
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → dom 𝑢 = ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ) |
49 |
|
hashcl |
⊢ ( 𝑢 ∈ Fin → ( ♯ ‘ 𝑢 ) ∈ ℕ0 ) |
50 |
25 26 27 49
|
4syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( ♯ ‘ 𝑢 ) ∈ ℕ0 ) |
51 |
50
|
nn0zd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( ♯ ‘ 𝑢 ) ∈ ℤ ) |
52 |
18
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐷 ) ∈ ℤ ) |
53 |
3 52
|
eqeltrid |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
54 |
53
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → 𝑁 ∈ ℤ ) |
55 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → 𝐷 ∈ Fin ) |
56 |
|
wrdf |
⊢ ( 𝑢 ∈ Word 𝐷 → 𝑢 : ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ⟶ 𝐷 ) |
57 |
56
|
frnd |
⊢ ( 𝑢 ∈ Word 𝐷 → ran 𝑢 ⊆ 𝐷 ) |
58 |
25 26 57
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ran 𝑢 ⊆ 𝐷 ) |
59 |
|
hashss |
⊢ ( ( 𝐷 ∈ Fin ∧ ran 𝑢 ⊆ 𝐷 ) → ( ♯ ‘ ran 𝑢 ) ≤ ( ♯ ‘ 𝐷 ) ) |
60 |
55 58 59
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( ♯ ‘ ran 𝑢 ) ≤ ( ♯ ‘ 𝐷 ) ) |
61 |
3
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → 𝑁 = ( ♯ ‘ 𝐷 ) ) |
62 |
60 43 61
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( ♯ ‘ 𝑢 ) ≤ 𝑁 ) |
63 |
|
eluz1 |
⊢ ( ( ♯ ‘ 𝑢 ) ∈ ℤ → ( 𝑁 ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑢 ) ) ↔ ( 𝑁 ∈ ℤ ∧ ( ♯ ‘ 𝑢 ) ≤ 𝑁 ) ) ) |
64 |
63
|
biimpar |
⊢ ( ( ( ♯ ‘ 𝑢 ) ∈ ℤ ∧ ( 𝑁 ∈ ℤ ∧ ( ♯ ‘ 𝑢 ) ≤ 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑢 ) ) ) |
65 |
51 54 62 64
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → 𝑁 ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑢 ) ) ) |
66 |
|
fzoss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑢 ) ) → ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ⊆ ( 0 ..^ 𝑁 ) ) |
67 |
65 66
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ⊆ ( 0 ..^ 𝑁 ) ) |
68 |
48 67
|
eqsstrd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → dom 𝑢 ⊆ ( 0 ..^ 𝑁 ) ) |
69 |
|
hashssdif |
⊢ ( ( ( 0 ..^ 𝑁 ) ∈ Fin ∧ dom 𝑢 ⊆ ( 0 ..^ 𝑁 ) ) → ( ♯ ‘ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = ( ( ♯ ‘ ( 0 ..^ 𝑁 ) ) − ( ♯ ‘ dom 𝑢 ) ) ) |
70 |
46 68 69
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( ♯ ‘ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = ( ( ♯ ‘ ( 0 ..^ 𝑁 ) ) − ( ♯ ‘ dom 𝑢 ) ) ) |
71 |
|
hashssdif |
⊢ ( ( 𝐷 ∈ Fin ∧ ran 𝑢 ⊆ 𝐷 ) → ( ♯ ‘ ( 𝐷 ∖ ran 𝑢 ) ) = ( ( ♯ ‘ 𝐷 ) − ( ♯ ‘ ran 𝑢 ) ) ) |
72 |
55 58 71
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( ♯ ‘ ( 𝐷 ∖ ran 𝑢 ) ) = ( ( ♯ ‘ 𝐷 ) − ( ♯ ‘ ran 𝑢 ) ) ) |
73 |
45 70 72
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( ♯ ‘ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = ( ♯ ‘ ( 𝐷 ∖ ran 𝑢 ) ) ) |
74 |
|
hasheqf1o |
⊢ ( ( ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ∈ Fin ∧ ( 𝐷 ∖ ran 𝑢 ) ∈ Fin ) → ( ( ♯ ‘ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = ( ♯ ‘ ( 𝐷 ∖ ran 𝑢 ) ) ↔ ∃ 𝑓 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) ) |
75 |
74
|
biimpa |
⊢ ( ( ( ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ∈ Fin ∧ ( 𝐷 ∖ ran 𝑢 ) ∈ Fin ) ∧ ( ♯ ‘ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = ( ♯ ‘ ( 𝐷 ∖ ran 𝑢 ) ) ) → ∃ 𝑓 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) |
76 |
13 16 73 75
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ∃ 𝑓 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) |
77 |
35
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → 𝑢 : dom 𝑢 –1-1→ 𝐷 ) |
78 |
|
f1f1orn |
⊢ ( 𝑢 : dom 𝑢 –1-1→ 𝐷 → 𝑢 : dom 𝑢 –1-1-onto→ ran 𝑢 ) |
79 |
77 78
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → 𝑢 : dom 𝑢 –1-1-onto→ ran 𝑢 ) |
80 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) |
81 |
|
disjdif |
⊢ ( dom 𝑢 ∩ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = ∅ |
82 |
81
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( dom 𝑢 ∩ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = ∅ ) |
83 |
|
disjdif |
⊢ ( ran 𝑢 ∩ ( 𝐷 ∖ ran 𝑢 ) ) = ∅ |
84 |
83
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ran 𝑢 ∩ ( 𝐷 ∖ ran 𝑢 ) ) = ∅ ) |
85 |
|
f1oun |
⊢ ( ( ( 𝑢 : dom 𝑢 –1-1-onto→ ran 𝑢 ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) ∧ ( ( dom 𝑢 ∩ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = ∅ ∧ ( ran 𝑢 ∩ ( 𝐷 ∖ ran 𝑢 ) ) = ∅ ) ) → ( 𝑢 ∪ 𝑓 ) : ( dom 𝑢 ∪ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) –1-1-onto→ ( ran 𝑢 ∪ ( 𝐷 ∖ ran 𝑢 ) ) ) |
86 |
79 80 82 84 85
|
syl22anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( 𝑢 ∪ 𝑓 ) : ( dom 𝑢 ∪ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) –1-1-onto→ ( ran 𝑢 ∪ ( 𝐷 ∖ ran 𝑢 ) ) ) |
87 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( 𝑢 ∪ 𝑓 ) = ( 𝑢 ∪ 𝑓 ) ) |
88 |
68
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → dom 𝑢 ⊆ ( 0 ..^ 𝑁 ) ) |
89 |
|
undif |
⊢ ( dom 𝑢 ⊆ ( 0 ..^ 𝑁 ) ↔ ( dom 𝑢 ∪ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = ( 0 ..^ 𝑁 ) ) |
90 |
88 89
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( dom 𝑢 ∪ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = ( 0 ..^ 𝑁 ) ) |
91 |
|
undif |
⊢ ( ran 𝑢 ⊆ 𝐷 ↔ ( ran 𝑢 ∪ ( 𝐷 ∖ ran 𝑢 ) ) = 𝐷 ) |
92 |
58 91
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( ran 𝑢 ∪ ( 𝐷 ∖ ran 𝑢 ) ) = 𝐷 ) |
93 |
92
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ran 𝑢 ∪ ( 𝐷 ∖ ran 𝑢 ) ) = 𝐷 ) |
94 |
87 90 93
|
f1oeq123d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( 𝑢 ∪ 𝑓 ) : ( dom 𝑢 ∪ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) –1-1-onto→ ( ran 𝑢 ∪ ( 𝐷 ∖ ran 𝑢 ) ) ↔ ( 𝑢 ∪ 𝑓 ) : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷 ) ) |
95 |
86 94
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( 𝑢 ∪ 𝑓 ) : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷 ) |
96 |
|
f1ocnv |
⊢ ( ( 𝑢 ∪ 𝑓 ) : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷 → ◡ ( 𝑢 ∪ 𝑓 ) : 𝐷 –1-1-onto→ ( 0 ..^ 𝑁 ) ) |
97 |
95 96
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ◡ ( 𝑢 ∪ 𝑓 ) : 𝐷 –1-1-onto→ ( 0 ..^ 𝑁 ) ) |
98 |
1 2 3 4 5
|
cycpmgcl |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑃 ∈ ( 0 ... 𝑁 ) ) → 𝐶 ⊆ 𝐵 ) |
99 |
9 8 98
|
syl2anc |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐵 ) |
100 |
99 10
|
sseldd |
⊢ ( 𝜑 → 𝑄 ∈ 𝐵 ) |
101 |
2 5
|
symgbasf1o |
⊢ ( 𝑄 ∈ 𝐵 → 𝑄 : 𝐷 –1-1-onto→ 𝐷 ) |
102 |
100 101
|
syl |
⊢ ( 𝜑 → 𝑄 : 𝐷 –1-1-onto→ 𝐷 ) |
103 |
102
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → 𝑄 : 𝐷 –1-1-onto→ 𝐷 ) |
104 |
|
f1oco |
⊢ ( ( ◡ ( 𝑢 ∪ 𝑓 ) : 𝐷 –1-1-onto→ ( 0 ..^ 𝑁 ) ∧ 𝑄 : 𝐷 –1-1-onto→ 𝐷 ) → ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) : 𝐷 –1-1-onto→ ( 0 ..^ 𝑁 ) ) |
105 |
97 103 104
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) : 𝐷 –1-1-onto→ ( 0 ..^ 𝑁 ) ) |
106 |
|
f1oco |
⊢ ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) : 𝐷 –1-1-onto→ ( 0 ..^ 𝑁 ) ∧ ( 𝑢 ∪ 𝑓 ) : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷 ) → ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) : ( 0 ..^ 𝑁 ) –1-1-onto→ ( 0 ..^ 𝑁 ) ) |
107 |
105 95 106
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) : ( 0 ..^ 𝑁 ) –1-1-onto→ ( 0 ..^ 𝑁 ) ) |
108 |
|
f1ofun |
⊢ ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) : ( 0 ..^ 𝑁 ) –1-1-onto→ ( 0 ..^ 𝑁 ) → Fun ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ) |
109 |
|
funrel |
⊢ ( Fun ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) → Rel ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ) |
110 |
107 108 109
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → Rel ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ) |
111 |
|
f1odm |
⊢ ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) : ( 0 ..^ 𝑁 ) –1-1-onto→ ( 0 ..^ 𝑁 ) → dom ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) = ( 0 ..^ 𝑁 ) ) |
112 |
107 111
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → dom ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) = ( 0 ..^ 𝑁 ) ) |
113 |
|
fzosplit |
⊢ ( 𝑃 ∈ ( 0 ... 𝑁 ) → ( 0 ..^ 𝑁 ) = ( ( 0 ..^ 𝑃 ) ∪ ( 𝑃 ..^ 𝑁 ) ) ) |
114 |
8 113
|
syl |
⊢ ( 𝜑 → ( 0 ..^ 𝑁 ) = ( ( 0 ..^ 𝑃 ) ∪ ( 𝑃 ..^ 𝑁 ) ) ) |
115 |
114
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( 0 ..^ 𝑁 ) = ( ( 0 ..^ 𝑃 ) ∪ ( 𝑃 ..^ 𝑁 ) ) ) |
116 |
112 115
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → dom ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) = ( ( 0 ..^ 𝑃 ) ∪ ( 𝑃 ..^ 𝑁 ) ) ) |
117 |
|
fzodisj |
⊢ ( ( 0 ..^ 𝑃 ) ∩ ( 𝑃 ..^ 𝑁 ) ) = ∅ |
118 |
|
reldisjun |
⊢ ( ( Rel ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ∧ dom ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) = ( ( 0 ..^ 𝑃 ) ∪ ( 𝑃 ..^ 𝑁 ) ) ∧ ( ( 0 ..^ 𝑃 ) ∩ ( 𝑃 ..^ 𝑁 ) ) = ∅ ) → ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) = ( ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ↾ ( 0 ..^ 𝑃 ) ) ∪ ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ↾ ( 𝑃 ..^ 𝑁 ) ) ) ) |
119 |
117 118
|
mp3an3 |
⊢ ( ( Rel ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ∧ dom ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) = ( ( 0 ..^ 𝑃 ) ∪ ( 𝑃 ..^ 𝑁 ) ) ) → ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) = ( ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ↾ ( 0 ..^ 𝑃 ) ) ∪ ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ↾ ( 𝑃 ..^ 𝑁 ) ) ) ) |
120 |
110 116 119
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) = ( ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ↾ ( 0 ..^ 𝑃 ) ) ∪ ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ↾ ( 𝑃 ..^ 𝑁 ) ) ) ) |
121 |
|
resco |
⊢ ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ↾ ( 0 ..^ 𝑃 ) ) = ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( ( 𝑢 ∪ 𝑓 ) ↾ ( 0 ..^ 𝑃 ) ) ) |
122 |
121
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ↾ ( 0 ..^ 𝑃 ) ) = ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( ( 𝑢 ∪ 𝑓 ) ↾ ( 0 ..^ 𝑃 ) ) ) ) |
123 |
25 26
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → 𝑢 ∈ Word 𝐷 ) |
124 |
|
wrdfn |
⊢ ( 𝑢 ∈ Word 𝐷 → 𝑢 Fn ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ) |
125 |
123 124
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → 𝑢 Fn ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ) |
126 |
24
|
elin2d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → 𝑢 ∈ ( ◡ ♯ “ { 𝑃 } ) ) |
127 |
|
hashf |
⊢ ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) |
128 |
|
ffn |
⊢ ( ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) → ♯ Fn V ) |
129 |
|
fniniseg |
⊢ ( ♯ Fn V → ( 𝑢 ∈ ( ◡ ♯ “ { 𝑃 } ) ↔ ( 𝑢 ∈ V ∧ ( ♯ ‘ 𝑢 ) = 𝑃 ) ) ) |
130 |
127 128 129
|
mp2b |
⊢ ( 𝑢 ∈ ( ◡ ♯ “ { 𝑃 } ) ↔ ( 𝑢 ∈ V ∧ ( ♯ ‘ 𝑢 ) = 𝑃 ) ) |
131 |
130
|
simprbi |
⊢ ( 𝑢 ∈ ( ◡ ♯ “ { 𝑃 } ) → ( ♯ ‘ 𝑢 ) = 𝑃 ) |
132 |
126 131
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( ♯ ‘ 𝑢 ) = 𝑃 ) |
133 |
132
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( 0 ..^ ( ♯ ‘ 𝑢 ) ) = ( 0 ..^ 𝑃 ) ) |
134 |
133
|
fneq2d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( 𝑢 Fn ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ↔ 𝑢 Fn ( 0 ..^ 𝑃 ) ) ) |
135 |
125 134
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → 𝑢 Fn ( 0 ..^ 𝑃 ) ) |
136 |
135
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → 𝑢 Fn ( 0 ..^ 𝑃 ) ) |
137 |
|
f1ofn |
⊢ ( 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) → 𝑓 Fn ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) |
138 |
80 137
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → 𝑓 Fn ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) |
139 |
48 133
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → dom 𝑢 = ( 0 ..^ 𝑃 ) ) |
140 |
139
|
ineq1d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( dom 𝑢 ∩ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = ( ( 0 ..^ 𝑃 ) ∩ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) ) |
141 |
81
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( dom 𝑢 ∩ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = ∅ ) |
142 |
140 141
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( ( 0 ..^ 𝑃 ) ∩ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = ∅ ) |
143 |
142
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( 0 ..^ 𝑃 ) ∩ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = ∅ ) |
144 |
|
fnunres1 |
⊢ ( ( 𝑢 Fn ( 0 ..^ 𝑃 ) ∧ 𝑓 Fn ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ∧ ( ( 0 ..^ 𝑃 ) ∩ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = ∅ ) → ( ( 𝑢 ∪ 𝑓 ) ↾ ( 0 ..^ 𝑃 ) ) = 𝑢 ) |
145 |
136 138 143 144
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( 𝑢 ∪ 𝑓 ) ↾ ( 0 ..^ 𝑃 ) ) = 𝑢 ) |
146 |
145
|
coeq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( ( 𝑢 ∪ 𝑓 ) ↾ ( 0 ..^ 𝑃 ) ) ) = ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ 𝑢 ) ) |
147 |
|
resco |
⊢ ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ↾ ran 𝑢 ) = ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ ( 𝑄 ↾ ran 𝑢 ) ) |
148 |
|
resco |
⊢ ( ( ◡ 𝑢 ∘ ( 𝑀 ‘ 𝑢 ) ) ↾ ran 𝑢 ) = ( ◡ 𝑢 ∘ ( ( 𝑀 ‘ 𝑢 ) ↾ ran 𝑢 ) ) |
149 |
148
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ 𝑢 ∘ ( 𝑀 ‘ 𝑢 ) ) ↾ ran 𝑢 ) = ( ◡ 𝑢 ∘ ( ( 𝑀 ‘ 𝑢 ) ↾ ran 𝑢 ) ) ) |
150 |
|
cnvun |
⊢ ◡ ( 𝑢 ∪ 𝑓 ) = ( ◡ 𝑢 ∪ ◡ 𝑓 ) |
151 |
150
|
reseq1i |
⊢ ( ◡ ( 𝑢 ∪ 𝑓 ) ↾ ran 𝑢 ) = ( ( ◡ 𝑢 ∪ ◡ 𝑓 ) ↾ ran 𝑢 ) |
152 |
|
f1ocnv |
⊢ ( 𝑢 : dom 𝑢 –1-1-onto→ ran 𝑢 → ◡ 𝑢 : ran 𝑢 –1-1-onto→ dom 𝑢 ) |
153 |
|
f1ofn |
⊢ ( ◡ 𝑢 : ran 𝑢 –1-1-onto→ dom 𝑢 → ◡ 𝑢 Fn ran 𝑢 ) |
154 |
79 152 153
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ◡ 𝑢 Fn ran 𝑢 ) |
155 |
|
f1ocnv |
⊢ ( 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) → ◡ 𝑓 : ( 𝐷 ∖ ran 𝑢 ) –1-1-onto→ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) |
156 |
|
f1ofn |
⊢ ( ◡ 𝑓 : ( 𝐷 ∖ ran 𝑢 ) –1-1-onto→ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) → ◡ 𝑓 Fn ( 𝐷 ∖ ran 𝑢 ) ) |
157 |
80 155 156
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ◡ 𝑓 Fn ( 𝐷 ∖ ran 𝑢 ) ) |
158 |
|
fnunres1 |
⊢ ( ( ◡ 𝑢 Fn ran 𝑢 ∧ ◡ 𝑓 Fn ( 𝐷 ∖ ran 𝑢 ) ∧ ( ran 𝑢 ∩ ( 𝐷 ∖ ran 𝑢 ) ) = ∅ ) → ( ( ◡ 𝑢 ∪ ◡ 𝑓 ) ↾ ran 𝑢 ) = ◡ 𝑢 ) |
159 |
154 157 84 158
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ 𝑢 ∪ ◡ 𝑓 ) ↾ ran 𝑢 ) = ◡ 𝑢 ) |
160 |
151 159
|
eqtr2id |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ◡ 𝑢 = ( ◡ ( 𝑢 ∪ 𝑓 ) ↾ ran 𝑢 ) ) |
161 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( 𝑀 ‘ 𝑢 ) = 𝑄 ) |
162 |
161
|
reseq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( 𝑀 ‘ 𝑢 ) ↾ ran 𝑢 ) = ( 𝑄 ↾ ran 𝑢 ) ) |
163 |
160 162
|
coeq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ◡ 𝑢 ∘ ( ( 𝑀 ‘ 𝑢 ) ↾ ran 𝑢 ) ) = ( ( ◡ ( 𝑢 ∪ 𝑓 ) ↾ ran 𝑢 ) ∘ ( 𝑄 ↾ ran 𝑢 ) ) ) |
164 |
55
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → 𝐷 ∈ Fin ) |
165 |
123
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → 𝑢 ∈ Word 𝐷 ) |
166 |
4 164 165 77
|
tocycfvres1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( 𝑀 ‘ 𝑢 ) ↾ ran 𝑢 ) = ( ( 𝑢 cyclShift 1 ) ∘ ◡ 𝑢 ) ) |
167 |
162 166
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( 𝑄 ↾ ran 𝑢 ) = ( ( 𝑢 cyclShift 1 ) ∘ ◡ 𝑢 ) ) |
168 |
167
|
rneqd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ran ( 𝑄 ↾ ran 𝑢 ) = ran ( ( 𝑢 cyclShift 1 ) ∘ ◡ 𝑢 ) ) |
169 |
|
1zzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → 1 ∈ ℤ ) |
170 |
|
cshf1o |
⊢ ( ( 𝑢 ∈ Word 𝐷 ∧ 𝑢 : dom 𝑢 –1-1→ 𝐷 ∧ 1 ∈ ℤ ) → ( 𝑢 cyclShift 1 ) : dom 𝑢 –1-1-onto→ ran 𝑢 ) |
171 |
165 77 169 170
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( 𝑢 cyclShift 1 ) : dom 𝑢 –1-1-onto→ ran 𝑢 ) |
172 |
79 152
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ◡ 𝑢 : ran 𝑢 –1-1-onto→ dom 𝑢 ) |
173 |
|
f1oco |
⊢ ( ( ( 𝑢 cyclShift 1 ) : dom 𝑢 –1-1-onto→ ran 𝑢 ∧ ◡ 𝑢 : ran 𝑢 –1-1-onto→ dom 𝑢 ) → ( ( 𝑢 cyclShift 1 ) ∘ ◡ 𝑢 ) : ran 𝑢 –1-1-onto→ ran 𝑢 ) |
174 |
171 172 173
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( 𝑢 cyclShift 1 ) ∘ ◡ 𝑢 ) : ran 𝑢 –1-1-onto→ ran 𝑢 ) |
175 |
|
f1ofo |
⊢ ( ( ( 𝑢 cyclShift 1 ) ∘ ◡ 𝑢 ) : ran 𝑢 –1-1-onto→ ran 𝑢 → ( ( 𝑢 cyclShift 1 ) ∘ ◡ 𝑢 ) : ran 𝑢 –onto→ ran 𝑢 ) |
176 |
|
forn |
⊢ ( ( ( 𝑢 cyclShift 1 ) ∘ ◡ 𝑢 ) : ran 𝑢 –onto→ ran 𝑢 → ran ( ( 𝑢 cyclShift 1 ) ∘ ◡ 𝑢 ) = ran 𝑢 ) |
177 |
174 175 176
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ran ( ( 𝑢 cyclShift 1 ) ∘ ◡ 𝑢 ) = ran 𝑢 ) |
178 |
168 177
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ran ( 𝑄 ↾ ran 𝑢 ) = ran 𝑢 ) |
179 |
|
ssid |
⊢ ran 𝑢 ⊆ ran 𝑢 |
180 |
178 179
|
eqsstrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ran ( 𝑄 ↾ ran 𝑢 ) ⊆ ran 𝑢 ) |
181 |
|
cores |
⊢ ( ran ( 𝑄 ↾ ran 𝑢 ) ⊆ ran 𝑢 → ( ( ◡ ( 𝑢 ∪ 𝑓 ) ↾ ran 𝑢 ) ∘ ( 𝑄 ↾ ran 𝑢 ) ) = ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ ( 𝑄 ↾ ran 𝑢 ) ) ) |
182 |
180 181
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ ( 𝑢 ∪ 𝑓 ) ↾ ran 𝑢 ) ∘ ( 𝑄 ↾ ran 𝑢 ) ) = ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ ( 𝑄 ↾ ran 𝑢 ) ) ) |
183 |
149 163 182
|
3eqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ ( 𝑄 ↾ ran 𝑢 ) ) = ( ( ◡ 𝑢 ∘ ( 𝑀 ‘ 𝑢 ) ) ↾ ran 𝑢 ) ) |
184 |
147 183
|
syl5eq |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ↾ ran 𝑢 ) = ( ( ◡ 𝑢 ∘ ( 𝑀 ‘ 𝑢 ) ) ↾ ran 𝑢 ) ) |
185 |
184
|
coeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ↾ ran 𝑢 ) ∘ 𝑢 ) = ( ( ( ◡ 𝑢 ∘ ( 𝑀 ‘ 𝑢 ) ) ↾ ran 𝑢 ) ∘ 𝑢 ) ) |
186 |
|
cores |
⊢ ( ran 𝑢 ⊆ ran 𝑢 → ( ( ( ◡ 𝑢 ∘ ( 𝑀 ‘ 𝑢 ) ) ↾ ran 𝑢 ) ∘ 𝑢 ) = ( ( ◡ 𝑢 ∘ ( 𝑀 ‘ 𝑢 ) ) ∘ 𝑢 ) ) |
187 |
179 186
|
mp1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ( ◡ 𝑢 ∘ ( 𝑀 ‘ 𝑢 ) ) ↾ ran 𝑢 ) ∘ 𝑢 ) = ( ( ◡ 𝑢 ∘ ( 𝑀 ‘ 𝑢 ) ) ∘ 𝑢 ) ) |
188 |
185 187
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ↾ ran 𝑢 ) ∘ 𝑢 ) = ( ( ◡ 𝑢 ∘ ( 𝑀 ‘ 𝑢 ) ) ∘ 𝑢 ) ) |
189 |
|
cores |
⊢ ( ran 𝑢 ⊆ ran 𝑢 → ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ↾ ran 𝑢 ) ∘ 𝑢 ) = ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ 𝑢 ) ) |
190 |
179 189
|
mp1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ↾ ran 𝑢 ) ∘ 𝑢 ) = ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ 𝑢 ) ) |
191 |
132
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ♯ ‘ 𝑢 ) = 𝑃 ) |
192 |
1 2 3 4 164 165 77 191
|
cycpmconjslem1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ 𝑢 ∘ ( 𝑀 ‘ 𝑢 ) ) ∘ 𝑢 ) = ( ( I ↾ ( 0 ..^ 𝑃 ) ) cyclShift 1 ) ) |
193 |
188 190 192
|
3eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ 𝑢 ) = ( ( I ↾ ( 0 ..^ 𝑃 ) ) cyclShift 1 ) ) |
194 |
122 146 193
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ↾ ( 0 ..^ 𝑃 ) ) = ( ( I ↾ ( 0 ..^ 𝑃 ) ) cyclShift 1 ) ) |
195 |
|
resco |
⊢ ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ↾ ( 𝑃 ..^ 𝑁 ) ) = ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( ( 𝑢 ∪ 𝑓 ) ↾ ( 𝑃 ..^ 𝑁 ) ) ) |
196 |
139
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → dom 𝑢 = ( 0 ..^ 𝑃 ) ) |
197 |
196
|
difeq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) = ( ( 0 ..^ 𝑁 ) ∖ ( 0 ..^ 𝑃 ) ) ) |
198 |
|
fzodif1 |
⊢ ( 𝑃 ∈ ( 0 ... 𝑁 ) → ( ( 0 ..^ 𝑁 ) ∖ ( 0 ..^ 𝑃 ) ) = ( 𝑃 ..^ 𝑁 ) ) |
199 |
8 198
|
syl |
⊢ ( 𝜑 → ( ( 0 ..^ 𝑁 ) ∖ ( 0 ..^ 𝑃 ) ) = ( 𝑃 ..^ 𝑁 ) ) |
200 |
199
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( 0 ..^ 𝑁 ) ∖ ( 0 ..^ 𝑃 ) ) = ( 𝑃 ..^ 𝑁 ) ) |
201 |
197 200
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) = ( 𝑃 ..^ 𝑁 ) ) |
202 |
201
|
reseq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( 𝑢 ∪ 𝑓 ) ↾ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = ( ( 𝑢 ∪ 𝑓 ) ↾ ( 𝑃 ..^ 𝑁 ) ) ) |
203 |
|
fnunres2 |
⊢ ( ( 𝑢 Fn ( 0 ..^ 𝑃 ) ∧ 𝑓 Fn ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ∧ ( ( 0 ..^ 𝑃 ) ∩ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = ∅ ) → ( ( 𝑢 ∪ 𝑓 ) ↾ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = 𝑓 ) |
204 |
136 138 143 203
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( 𝑢 ∪ 𝑓 ) ↾ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = 𝑓 ) |
205 |
202 204
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( 𝑢 ∪ 𝑓 ) ↾ ( 𝑃 ..^ 𝑁 ) ) = 𝑓 ) |
206 |
205
|
coeq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( ( 𝑢 ∪ 𝑓 ) ↾ ( 𝑃 ..^ 𝑁 ) ) ) = ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ 𝑓 ) ) |
207 |
195 206
|
syl5eq |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ↾ ( 𝑃 ..^ 𝑁 ) ) = ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ 𝑓 ) ) |
208 |
150
|
reseq1i |
⊢ ( ◡ ( 𝑢 ∪ 𝑓 ) ↾ ( 𝐷 ∖ ran 𝑢 ) ) = ( ( ◡ 𝑢 ∪ ◡ 𝑓 ) ↾ ( 𝐷 ∖ ran 𝑢 ) ) |
209 |
|
fnunres2 |
⊢ ( ( ◡ 𝑢 Fn ran 𝑢 ∧ ◡ 𝑓 Fn ( 𝐷 ∖ ran 𝑢 ) ∧ ( ran 𝑢 ∩ ( 𝐷 ∖ ran 𝑢 ) ) = ∅ ) → ( ( ◡ 𝑢 ∪ ◡ 𝑓 ) ↾ ( 𝐷 ∖ ran 𝑢 ) ) = ◡ 𝑓 ) |
210 |
154 157 84 209
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ 𝑢 ∪ ◡ 𝑓 ) ↾ ( 𝐷 ∖ ran 𝑢 ) ) = ◡ 𝑓 ) |
211 |
208 210
|
syl5eq |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ◡ ( 𝑢 ∪ 𝑓 ) ↾ ( 𝐷 ∖ ran 𝑢 ) ) = ◡ 𝑓 ) |
212 |
161
|
reseq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( 𝑀 ‘ 𝑢 ) ↾ ( 𝐷 ∖ ran 𝑢 ) ) = ( 𝑄 ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) |
213 |
4 164 165 77
|
tocycfvres2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( 𝑀 ‘ 𝑢 ) ↾ ( 𝐷 ∖ ran 𝑢 ) ) = ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) |
214 |
212 213
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( 𝑄 ↾ ( 𝐷 ∖ ran 𝑢 ) ) = ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) |
215 |
211 214
|
coeq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ ( 𝑢 ∪ 𝑓 ) ↾ ( 𝐷 ∖ ran 𝑢 ) ) ∘ ( 𝑄 ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) = ( ◡ 𝑓 ∘ ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) ) |
216 |
214
|
rneqd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ran ( 𝑄 ↾ ( 𝐷 ∖ ran 𝑢 ) ) = ran ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) |
217 |
|
rnresi |
⊢ ran ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) = ( 𝐷 ∖ ran 𝑢 ) |
218 |
217
|
eqimssi |
⊢ ran ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ⊆ ( 𝐷 ∖ ran 𝑢 ) |
219 |
216 218
|
eqsstrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ran ( 𝑄 ↾ ( 𝐷 ∖ ran 𝑢 ) ) ⊆ ( 𝐷 ∖ ran 𝑢 ) ) |
220 |
|
cores |
⊢ ( ran ( 𝑄 ↾ ( 𝐷 ∖ ran 𝑢 ) ) ⊆ ( 𝐷 ∖ ran 𝑢 ) → ( ( ◡ ( 𝑢 ∪ 𝑓 ) ↾ ( 𝐷 ∖ ran 𝑢 ) ) ∘ ( 𝑄 ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) = ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ ( 𝑄 ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) ) |
221 |
219 220
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ ( 𝑢 ∪ 𝑓 ) ↾ ( 𝐷 ∖ ran 𝑢 ) ) ∘ ( 𝑄 ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) = ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ ( 𝑄 ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) ) |
222 |
|
resco |
⊢ ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ↾ ( 𝐷 ∖ ran 𝑢 ) ) = ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ ( 𝑄 ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) |
223 |
221 222
|
eqtr4di |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ ( 𝑢 ∪ 𝑓 ) ↾ ( 𝐷 ∖ ran 𝑢 ) ) ∘ ( 𝑄 ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) = ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) |
224 |
215 223
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ◡ 𝑓 ∘ ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) = ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) |
225 |
224
|
coeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ 𝑓 ∘ ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) ∘ 𝑓 ) = ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ↾ ( 𝐷 ∖ ran 𝑢 ) ) ∘ 𝑓 ) ) |
226 |
|
f1of |
⊢ ( ◡ 𝑓 : ( 𝐷 ∖ ran 𝑢 ) –1-1-onto→ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) → ◡ 𝑓 : ( 𝐷 ∖ ran 𝑢 ) ⟶ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) |
227 |
80 155 226
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ◡ 𝑓 : ( 𝐷 ∖ ran 𝑢 ) ⟶ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) |
228 |
|
fcoi1 |
⊢ ( ◡ 𝑓 : ( 𝐷 ∖ ran 𝑢 ) ⟶ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) → ( ◡ 𝑓 ∘ ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) = ◡ 𝑓 ) |
229 |
227 228
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ◡ 𝑓 ∘ ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) = ◡ 𝑓 ) |
230 |
229
|
coeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ 𝑓 ∘ ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) ∘ 𝑓 ) = ( ◡ 𝑓 ∘ 𝑓 ) ) |
231 |
|
f1ococnv1 |
⊢ ( 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) → ( ◡ 𝑓 ∘ 𝑓 ) = ( I ↾ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) ) |
232 |
80 231
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ◡ 𝑓 ∘ 𝑓 ) = ( I ↾ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) ) |
233 |
201
|
reseq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( I ↾ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = ( I ↾ ( 𝑃 ..^ 𝑁 ) ) ) |
234 |
230 232 233
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ 𝑓 ∘ ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) ∘ 𝑓 ) = ( I ↾ ( 𝑃 ..^ 𝑁 ) ) ) |
235 |
|
f1of |
⊢ ( 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) → 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ⟶ ( 𝐷 ∖ ran 𝑢 ) ) |
236 |
|
frn |
⊢ ( 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ⟶ ( 𝐷 ∖ ran 𝑢 ) → ran 𝑓 ⊆ ( 𝐷 ∖ ran 𝑢 ) ) |
237 |
80 235 236
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ran 𝑓 ⊆ ( 𝐷 ∖ ran 𝑢 ) ) |
238 |
|
cores |
⊢ ( ran 𝑓 ⊆ ( 𝐷 ∖ ran 𝑢 ) → ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ↾ ( 𝐷 ∖ ran 𝑢 ) ) ∘ 𝑓 ) = ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ 𝑓 ) ) |
239 |
237 238
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ↾ ( 𝐷 ∖ ran 𝑢 ) ) ∘ 𝑓 ) = ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ 𝑓 ) ) |
240 |
225 234 239
|
3eqtr3rd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ 𝑓 ) = ( I ↾ ( 𝑃 ..^ 𝑁 ) ) ) |
241 |
207 240
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ↾ ( 𝑃 ..^ 𝑁 ) ) = ( I ↾ ( 𝑃 ..^ 𝑁 ) ) ) |
242 |
194 241
|
uneq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ↾ ( 0 ..^ 𝑃 ) ) ∪ ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ↾ ( 𝑃 ..^ 𝑁 ) ) ) = ( ( ( I ↾ ( 0 ..^ 𝑃 ) ) cyclShift 1 ) ∪ ( I ↾ ( 𝑃 ..^ 𝑁 ) ) ) ) |
243 |
120 242
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) = ( ( ( I ↾ ( 0 ..^ 𝑃 ) ) cyclShift 1 ) ∪ ( I ↾ ( 𝑃 ..^ 𝑁 ) ) ) ) |
244 |
|
vex |
⊢ 𝑢 ∈ V |
245 |
|
vex |
⊢ 𝑓 ∈ V |
246 |
244 245
|
unex |
⊢ ( 𝑢 ∪ 𝑓 ) ∈ V |
247 |
|
f1oeq1 |
⊢ ( 𝑞 = ( 𝑢 ∪ 𝑓 ) → ( 𝑞 : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷 ↔ ( 𝑢 ∪ 𝑓 ) : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷 ) ) |
248 |
|
cnveq |
⊢ ( 𝑞 = ( 𝑢 ∪ 𝑓 ) → ◡ 𝑞 = ◡ ( 𝑢 ∪ 𝑓 ) ) |
249 |
248
|
coeq1d |
⊢ ( 𝑞 = ( 𝑢 ∪ 𝑓 ) → ( ◡ 𝑞 ∘ 𝑄 ) = ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ) |
250 |
|
id |
⊢ ( 𝑞 = ( 𝑢 ∪ 𝑓 ) → 𝑞 = ( 𝑢 ∪ 𝑓 ) ) |
251 |
249 250
|
coeq12d |
⊢ ( 𝑞 = ( 𝑢 ∪ 𝑓 ) → ( ( ◡ 𝑞 ∘ 𝑄 ) ∘ 𝑞 ) = ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ) |
252 |
251
|
eqeq1d |
⊢ ( 𝑞 = ( 𝑢 ∪ 𝑓 ) → ( ( ( ◡ 𝑞 ∘ 𝑄 ) ∘ 𝑞 ) = ( ( ( I ↾ ( 0 ..^ 𝑃 ) ) cyclShift 1 ) ∪ ( I ↾ ( 𝑃 ..^ 𝑁 ) ) ) ↔ ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) = ( ( ( I ↾ ( 0 ..^ 𝑃 ) ) cyclShift 1 ) ∪ ( I ↾ ( 𝑃 ..^ 𝑁 ) ) ) ) ) |
253 |
247 252
|
anbi12d |
⊢ ( 𝑞 = ( 𝑢 ∪ 𝑓 ) → ( ( 𝑞 : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷 ∧ ( ( ◡ 𝑞 ∘ 𝑄 ) ∘ 𝑞 ) = ( ( ( I ↾ ( 0 ..^ 𝑃 ) ) cyclShift 1 ) ∪ ( I ↾ ( 𝑃 ..^ 𝑁 ) ) ) ) ↔ ( ( 𝑢 ∪ 𝑓 ) : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷 ∧ ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) = ( ( ( I ↾ ( 0 ..^ 𝑃 ) ) cyclShift 1 ) ∪ ( I ↾ ( 𝑃 ..^ 𝑁 ) ) ) ) ) ) |
254 |
246 253
|
spcev |
⊢ ( ( ( 𝑢 ∪ 𝑓 ) : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷 ∧ ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) = ( ( ( I ↾ ( 0 ..^ 𝑃 ) ) cyclShift 1 ) ∪ ( I ↾ ( 𝑃 ..^ 𝑁 ) ) ) ) → ∃ 𝑞 ( 𝑞 : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷 ∧ ( ( ◡ 𝑞 ∘ 𝑄 ) ∘ 𝑞 ) = ( ( ( I ↾ ( 0 ..^ 𝑃 ) ) cyclShift 1 ) ∪ ( I ↾ ( 𝑃 ..^ 𝑁 ) ) ) ) ) |
255 |
95 243 254
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ∃ 𝑞 ( 𝑞 : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷 ∧ ( ( ◡ 𝑞 ∘ 𝑄 ) ∘ 𝑞 ) = ( ( ( I ↾ ( 0 ..^ 𝑃 ) ) cyclShift 1 ) ∪ ( I ↾ ( 𝑃 ..^ 𝑁 ) ) ) ) ) |
256 |
76 255
|
exlimddv |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ∃ 𝑞 ( 𝑞 : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷 ∧ ( ( ◡ 𝑞 ∘ 𝑄 ) ∘ 𝑞 ) = ( ( ( I ↾ ( 0 ..^ 𝑃 ) ) cyclShift 1 ) ∪ ( I ↾ ( 𝑃 ..^ 𝑁 ) ) ) ) ) |
257 |
|
nfcv |
⊢ Ⅎ 𝑢 𝑀 |
258 |
4 2 5
|
tocycf |
⊢ ( 𝐷 ∈ Fin → 𝑀 : { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⟶ 𝐵 ) |
259 |
|
ffn |
⊢ ( 𝑀 : { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⟶ 𝐵 → 𝑀 Fn { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
260 |
9 258 259
|
3syl |
⊢ ( 𝜑 → 𝑀 Fn { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
261 |
10 1
|
eleqtrdi |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑀 “ ( ◡ ♯ “ { 𝑃 } ) ) ) |
262 |
257 260 261
|
fvelimad |
⊢ ( 𝜑 → ∃ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ( 𝑀 ‘ 𝑢 ) = 𝑄 ) |
263 |
256 262
|
r19.29a |
⊢ ( 𝜑 → ∃ 𝑞 ( 𝑞 : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷 ∧ ( ( ◡ 𝑞 ∘ 𝑄 ) ∘ 𝑞 ) = ( ( ( I ↾ ( 0 ..^ 𝑃 ) ) cyclShift 1 ) ∪ ( I ↾ ( 𝑃 ..^ 𝑁 ) ) ) ) ) |