| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cycpmconjs.c |
⊢ 𝐶 = ( 𝑀 “ ( ◡ ♯ “ { 𝑃 } ) ) |
| 2 |
|
cycpmconjs.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
| 3 |
|
cycpmconjs.n |
⊢ 𝑁 = ( ♯ ‘ 𝐷 ) |
| 4 |
|
cycpmconjs.m |
⊢ 𝑀 = ( toCyc ‘ 𝐷 ) |
| 5 |
|
cycpmconjs.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 6 |
|
cycpmconjs.a |
⊢ + = ( +g ‘ 𝑆 ) |
| 7 |
|
cycpmconjs.l |
⊢ − = ( -g ‘ 𝑆 ) |
| 8 |
|
cycpmconjs.p |
⊢ ( 𝜑 → 𝑃 ∈ ( 0 ... 𝑁 ) ) |
| 9 |
|
cycpmconjs.d |
⊢ ( 𝜑 → 𝐷 ∈ Fin ) |
| 10 |
|
cycpmconjs.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐶 ) |
| 11 |
|
fzofi |
⊢ ( 0 ..^ 𝑁 ) ∈ Fin |
| 12 |
|
diffi |
⊢ ( ( 0 ..^ 𝑁 ) ∈ Fin → ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ∈ Fin ) |
| 13 |
11 12
|
mp1i |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ∈ Fin ) |
| 14 |
|
diffi |
⊢ ( 𝐷 ∈ Fin → ( 𝐷 ∖ ran 𝑢 ) ∈ Fin ) |
| 15 |
9 14
|
syl |
⊢ ( 𝜑 → ( 𝐷 ∖ ran 𝑢 ) ∈ Fin ) |
| 16 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( 𝐷 ∖ ran 𝑢 ) ∈ Fin ) |
| 17 |
|
hashcl |
⊢ ( 𝐷 ∈ Fin → ( ♯ ‘ 𝐷 ) ∈ ℕ0 ) |
| 18 |
9 17
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐷 ) ∈ ℕ0 ) |
| 19 |
3 18
|
eqeltrid |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 20 |
|
hashfzo0 |
⊢ ( 𝑁 ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = 𝑁 ) |
| 21 |
19 20
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = 𝑁 ) |
| 22 |
21 3
|
eqtrdi |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = ( ♯ ‘ 𝐷 ) ) |
| 23 |
22
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = ( ♯ ‘ 𝐷 ) ) |
| 24 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) |
| 25 |
24
|
elin1d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
| 26 |
|
elrabi |
⊢ ( 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } → 𝑢 ∈ Word 𝐷 ) |
| 27 |
|
wrdfin |
⊢ ( 𝑢 ∈ Word 𝐷 → 𝑢 ∈ Fin ) |
| 28 |
25 26 27
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → 𝑢 ∈ Fin ) |
| 29 |
|
id |
⊢ ( 𝑤 = 𝑢 → 𝑤 = 𝑢 ) |
| 30 |
|
dmeq |
⊢ ( 𝑤 = 𝑢 → dom 𝑤 = dom 𝑢 ) |
| 31 |
|
eqidd |
⊢ ( 𝑤 = 𝑢 → 𝐷 = 𝐷 ) |
| 32 |
29 30 31
|
f1eq123d |
⊢ ( 𝑤 = 𝑢 → ( 𝑤 : dom 𝑤 –1-1→ 𝐷 ↔ 𝑢 : dom 𝑢 –1-1→ 𝐷 ) ) |
| 33 |
32
|
elrab |
⊢ ( 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ↔ ( 𝑢 ∈ Word 𝐷 ∧ 𝑢 : dom 𝑢 –1-1→ 𝐷 ) ) |
| 34 |
33
|
simprbi |
⊢ ( 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } → 𝑢 : dom 𝑢 –1-1→ 𝐷 ) |
| 35 |
25 34
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → 𝑢 : dom 𝑢 –1-1→ 𝐷 ) |
| 36 |
|
f1fun |
⊢ ( 𝑢 : dom 𝑢 –1-1→ 𝐷 → Fun 𝑢 ) |
| 37 |
35 36
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → Fun 𝑢 ) |
| 38 |
|
hashfun |
⊢ ( 𝑢 ∈ Fin → ( Fun 𝑢 ↔ ( ♯ ‘ 𝑢 ) = ( ♯ ‘ dom 𝑢 ) ) ) |
| 39 |
38
|
biimpa |
⊢ ( ( 𝑢 ∈ Fin ∧ Fun 𝑢 ) → ( ♯ ‘ 𝑢 ) = ( ♯ ‘ dom 𝑢 ) ) |
| 40 |
28 37 39
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( ♯ ‘ 𝑢 ) = ( ♯ ‘ dom 𝑢 ) ) |
| 41 |
24
|
dmexd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → dom 𝑢 ∈ V ) |
| 42 |
|
hashf1rn |
⊢ ( ( dom 𝑢 ∈ V ∧ 𝑢 : dom 𝑢 –1-1→ 𝐷 ) → ( ♯ ‘ 𝑢 ) = ( ♯ ‘ ran 𝑢 ) ) |
| 43 |
41 35 42
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( ♯ ‘ 𝑢 ) = ( ♯ ‘ ran 𝑢 ) ) |
| 44 |
40 43
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( ♯ ‘ dom 𝑢 ) = ( ♯ ‘ ran 𝑢 ) ) |
| 45 |
23 44
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( ( ♯ ‘ ( 0 ..^ 𝑁 ) ) − ( ♯ ‘ dom 𝑢 ) ) = ( ( ♯ ‘ 𝐷 ) − ( ♯ ‘ ran 𝑢 ) ) ) |
| 46 |
11
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( 0 ..^ 𝑁 ) ∈ Fin ) |
| 47 |
|
wrddm |
⊢ ( 𝑢 ∈ Word 𝐷 → dom 𝑢 = ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ) |
| 48 |
25 26 47
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → dom 𝑢 = ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ) |
| 49 |
|
hashcl |
⊢ ( 𝑢 ∈ Fin → ( ♯ ‘ 𝑢 ) ∈ ℕ0 ) |
| 50 |
25 26 27 49
|
4syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( ♯ ‘ 𝑢 ) ∈ ℕ0 ) |
| 51 |
50
|
nn0zd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( ♯ ‘ 𝑢 ) ∈ ℤ ) |
| 52 |
18
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐷 ) ∈ ℤ ) |
| 53 |
3 52
|
eqeltrid |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 54 |
53
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → 𝑁 ∈ ℤ ) |
| 55 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → 𝐷 ∈ Fin ) |
| 56 |
|
wrdf |
⊢ ( 𝑢 ∈ Word 𝐷 → 𝑢 : ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ⟶ 𝐷 ) |
| 57 |
56
|
frnd |
⊢ ( 𝑢 ∈ Word 𝐷 → ran 𝑢 ⊆ 𝐷 ) |
| 58 |
25 26 57
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ran 𝑢 ⊆ 𝐷 ) |
| 59 |
|
hashss |
⊢ ( ( 𝐷 ∈ Fin ∧ ran 𝑢 ⊆ 𝐷 ) → ( ♯ ‘ ran 𝑢 ) ≤ ( ♯ ‘ 𝐷 ) ) |
| 60 |
55 58 59
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( ♯ ‘ ran 𝑢 ) ≤ ( ♯ ‘ 𝐷 ) ) |
| 61 |
3
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → 𝑁 = ( ♯ ‘ 𝐷 ) ) |
| 62 |
60 43 61
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( ♯ ‘ 𝑢 ) ≤ 𝑁 ) |
| 63 |
|
eluz1 |
⊢ ( ( ♯ ‘ 𝑢 ) ∈ ℤ → ( 𝑁 ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑢 ) ) ↔ ( 𝑁 ∈ ℤ ∧ ( ♯ ‘ 𝑢 ) ≤ 𝑁 ) ) ) |
| 64 |
63
|
biimpar |
⊢ ( ( ( ♯ ‘ 𝑢 ) ∈ ℤ ∧ ( 𝑁 ∈ ℤ ∧ ( ♯ ‘ 𝑢 ) ≤ 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑢 ) ) ) |
| 65 |
51 54 62 64
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → 𝑁 ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑢 ) ) ) |
| 66 |
|
fzoss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑢 ) ) → ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ⊆ ( 0 ..^ 𝑁 ) ) |
| 67 |
65 66
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ⊆ ( 0 ..^ 𝑁 ) ) |
| 68 |
48 67
|
eqsstrd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → dom 𝑢 ⊆ ( 0 ..^ 𝑁 ) ) |
| 69 |
|
hashssdif |
⊢ ( ( ( 0 ..^ 𝑁 ) ∈ Fin ∧ dom 𝑢 ⊆ ( 0 ..^ 𝑁 ) ) → ( ♯ ‘ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = ( ( ♯ ‘ ( 0 ..^ 𝑁 ) ) − ( ♯ ‘ dom 𝑢 ) ) ) |
| 70 |
46 68 69
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( ♯ ‘ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = ( ( ♯ ‘ ( 0 ..^ 𝑁 ) ) − ( ♯ ‘ dom 𝑢 ) ) ) |
| 71 |
|
hashssdif |
⊢ ( ( 𝐷 ∈ Fin ∧ ran 𝑢 ⊆ 𝐷 ) → ( ♯ ‘ ( 𝐷 ∖ ran 𝑢 ) ) = ( ( ♯ ‘ 𝐷 ) − ( ♯ ‘ ran 𝑢 ) ) ) |
| 72 |
55 58 71
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( ♯ ‘ ( 𝐷 ∖ ran 𝑢 ) ) = ( ( ♯ ‘ 𝐷 ) − ( ♯ ‘ ran 𝑢 ) ) ) |
| 73 |
45 70 72
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( ♯ ‘ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = ( ♯ ‘ ( 𝐷 ∖ ran 𝑢 ) ) ) |
| 74 |
|
hasheqf1o |
⊢ ( ( ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ∈ Fin ∧ ( 𝐷 ∖ ran 𝑢 ) ∈ Fin ) → ( ( ♯ ‘ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = ( ♯ ‘ ( 𝐷 ∖ ran 𝑢 ) ) ↔ ∃ 𝑓 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) ) |
| 75 |
74
|
biimpa |
⊢ ( ( ( ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ∈ Fin ∧ ( 𝐷 ∖ ran 𝑢 ) ∈ Fin ) ∧ ( ♯ ‘ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = ( ♯ ‘ ( 𝐷 ∖ ran 𝑢 ) ) ) → ∃ 𝑓 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) |
| 76 |
13 16 73 75
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ∃ 𝑓 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) |
| 77 |
35
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → 𝑢 : dom 𝑢 –1-1→ 𝐷 ) |
| 78 |
|
f1f1orn |
⊢ ( 𝑢 : dom 𝑢 –1-1→ 𝐷 → 𝑢 : dom 𝑢 –1-1-onto→ ran 𝑢 ) |
| 79 |
77 78
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → 𝑢 : dom 𝑢 –1-1-onto→ ran 𝑢 ) |
| 80 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) |
| 81 |
|
disjdif |
⊢ ( dom 𝑢 ∩ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = ∅ |
| 82 |
81
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( dom 𝑢 ∩ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = ∅ ) |
| 83 |
|
disjdif |
⊢ ( ran 𝑢 ∩ ( 𝐷 ∖ ran 𝑢 ) ) = ∅ |
| 84 |
83
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ran 𝑢 ∩ ( 𝐷 ∖ ran 𝑢 ) ) = ∅ ) |
| 85 |
|
f1oun |
⊢ ( ( ( 𝑢 : dom 𝑢 –1-1-onto→ ran 𝑢 ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) ∧ ( ( dom 𝑢 ∩ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = ∅ ∧ ( ran 𝑢 ∩ ( 𝐷 ∖ ran 𝑢 ) ) = ∅ ) ) → ( 𝑢 ∪ 𝑓 ) : ( dom 𝑢 ∪ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) –1-1-onto→ ( ran 𝑢 ∪ ( 𝐷 ∖ ran 𝑢 ) ) ) |
| 86 |
79 80 82 84 85
|
syl22anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( 𝑢 ∪ 𝑓 ) : ( dom 𝑢 ∪ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) –1-1-onto→ ( ran 𝑢 ∪ ( 𝐷 ∖ ran 𝑢 ) ) ) |
| 87 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( 𝑢 ∪ 𝑓 ) = ( 𝑢 ∪ 𝑓 ) ) |
| 88 |
68
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → dom 𝑢 ⊆ ( 0 ..^ 𝑁 ) ) |
| 89 |
|
undif |
⊢ ( dom 𝑢 ⊆ ( 0 ..^ 𝑁 ) ↔ ( dom 𝑢 ∪ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = ( 0 ..^ 𝑁 ) ) |
| 90 |
88 89
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( dom 𝑢 ∪ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = ( 0 ..^ 𝑁 ) ) |
| 91 |
|
undif |
⊢ ( ran 𝑢 ⊆ 𝐷 ↔ ( ran 𝑢 ∪ ( 𝐷 ∖ ran 𝑢 ) ) = 𝐷 ) |
| 92 |
58 91
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( ran 𝑢 ∪ ( 𝐷 ∖ ran 𝑢 ) ) = 𝐷 ) |
| 93 |
92
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ran 𝑢 ∪ ( 𝐷 ∖ ran 𝑢 ) ) = 𝐷 ) |
| 94 |
87 90 93
|
f1oeq123d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( 𝑢 ∪ 𝑓 ) : ( dom 𝑢 ∪ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) –1-1-onto→ ( ran 𝑢 ∪ ( 𝐷 ∖ ran 𝑢 ) ) ↔ ( 𝑢 ∪ 𝑓 ) : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷 ) ) |
| 95 |
86 94
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( 𝑢 ∪ 𝑓 ) : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷 ) |
| 96 |
|
f1ocnv |
⊢ ( ( 𝑢 ∪ 𝑓 ) : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷 → ◡ ( 𝑢 ∪ 𝑓 ) : 𝐷 –1-1-onto→ ( 0 ..^ 𝑁 ) ) |
| 97 |
95 96
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ◡ ( 𝑢 ∪ 𝑓 ) : 𝐷 –1-1-onto→ ( 0 ..^ 𝑁 ) ) |
| 98 |
1 2 3 4 5
|
cycpmgcl |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑃 ∈ ( 0 ... 𝑁 ) ) → 𝐶 ⊆ 𝐵 ) |
| 99 |
9 8 98
|
syl2anc |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐵 ) |
| 100 |
99 10
|
sseldd |
⊢ ( 𝜑 → 𝑄 ∈ 𝐵 ) |
| 101 |
2 5
|
symgbasf1o |
⊢ ( 𝑄 ∈ 𝐵 → 𝑄 : 𝐷 –1-1-onto→ 𝐷 ) |
| 102 |
100 101
|
syl |
⊢ ( 𝜑 → 𝑄 : 𝐷 –1-1-onto→ 𝐷 ) |
| 103 |
102
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → 𝑄 : 𝐷 –1-1-onto→ 𝐷 ) |
| 104 |
|
f1oco |
⊢ ( ( ◡ ( 𝑢 ∪ 𝑓 ) : 𝐷 –1-1-onto→ ( 0 ..^ 𝑁 ) ∧ 𝑄 : 𝐷 –1-1-onto→ 𝐷 ) → ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) : 𝐷 –1-1-onto→ ( 0 ..^ 𝑁 ) ) |
| 105 |
97 103 104
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) : 𝐷 –1-1-onto→ ( 0 ..^ 𝑁 ) ) |
| 106 |
|
f1oco |
⊢ ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) : 𝐷 –1-1-onto→ ( 0 ..^ 𝑁 ) ∧ ( 𝑢 ∪ 𝑓 ) : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷 ) → ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) : ( 0 ..^ 𝑁 ) –1-1-onto→ ( 0 ..^ 𝑁 ) ) |
| 107 |
105 95 106
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) : ( 0 ..^ 𝑁 ) –1-1-onto→ ( 0 ..^ 𝑁 ) ) |
| 108 |
|
f1ofun |
⊢ ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) : ( 0 ..^ 𝑁 ) –1-1-onto→ ( 0 ..^ 𝑁 ) → Fun ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ) |
| 109 |
|
funrel |
⊢ ( Fun ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) → Rel ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ) |
| 110 |
107 108 109
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → Rel ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ) |
| 111 |
|
f1odm |
⊢ ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) : ( 0 ..^ 𝑁 ) –1-1-onto→ ( 0 ..^ 𝑁 ) → dom ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) = ( 0 ..^ 𝑁 ) ) |
| 112 |
107 111
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → dom ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) = ( 0 ..^ 𝑁 ) ) |
| 113 |
|
fzosplit |
⊢ ( 𝑃 ∈ ( 0 ... 𝑁 ) → ( 0 ..^ 𝑁 ) = ( ( 0 ..^ 𝑃 ) ∪ ( 𝑃 ..^ 𝑁 ) ) ) |
| 114 |
8 113
|
syl |
⊢ ( 𝜑 → ( 0 ..^ 𝑁 ) = ( ( 0 ..^ 𝑃 ) ∪ ( 𝑃 ..^ 𝑁 ) ) ) |
| 115 |
114
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( 0 ..^ 𝑁 ) = ( ( 0 ..^ 𝑃 ) ∪ ( 𝑃 ..^ 𝑁 ) ) ) |
| 116 |
112 115
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → dom ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) = ( ( 0 ..^ 𝑃 ) ∪ ( 𝑃 ..^ 𝑁 ) ) ) |
| 117 |
|
fzodisj |
⊢ ( ( 0 ..^ 𝑃 ) ∩ ( 𝑃 ..^ 𝑁 ) ) = ∅ |
| 118 |
|
reldisjun |
⊢ ( ( Rel ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ∧ dom ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) = ( ( 0 ..^ 𝑃 ) ∪ ( 𝑃 ..^ 𝑁 ) ) ∧ ( ( 0 ..^ 𝑃 ) ∩ ( 𝑃 ..^ 𝑁 ) ) = ∅ ) → ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) = ( ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ↾ ( 0 ..^ 𝑃 ) ) ∪ ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ↾ ( 𝑃 ..^ 𝑁 ) ) ) ) |
| 119 |
117 118
|
mp3an3 |
⊢ ( ( Rel ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ∧ dom ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) = ( ( 0 ..^ 𝑃 ) ∪ ( 𝑃 ..^ 𝑁 ) ) ) → ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) = ( ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ↾ ( 0 ..^ 𝑃 ) ) ∪ ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ↾ ( 𝑃 ..^ 𝑁 ) ) ) ) |
| 120 |
110 116 119
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) = ( ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ↾ ( 0 ..^ 𝑃 ) ) ∪ ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ↾ ( 𝑃 ..^ 𝑁 ) ) ) ) |
| 121 |
|
resco |
⊢ ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ↾ ( 0 ..^ 𝑃 ) ) = ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( ( 𝑢 ∪ 𝑓 ) ↾ ( 0 ..^ 𝑃 ) ) ) |
| 122 |
121
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ↾ ( 0 ..^ 𝑃 ) ) = ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( ( 𝑢 ∪ 𝑓 ) ↾ ( 0 ..^ 𝑃 ) ) ) ) |
| 123 |
25 26
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → 𝑢 ∈ Word 𝐷 ) |
| 124 |
|
wrdfn |
⊢ ( 𝑢 ∈ Word 𝐷 → 𝑢 Fn ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ) |
| 125 |
123 124
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → 𝑢 Fn ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ) |
| 126 |
24
|
elin2d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → 𝑢 ∈ ( ◡ ♯ “ { 𝑃 } ) ) |
| 127 |
|
hashf |
⊢ ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) |
| 128 |
|
ffn |
⊢ ( ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) → ♯ Fn V ) |
| 129 |
|
fniniseg |
⊢ ( ♯ Fn V → ( 𝑢 ∈ ( ◡ ♯ “ { 𝑃 } ) ↔ ( 𝑢 ∈ V ∧ ( ♯ ‘ 𝑢 ) = 𝑃 ) ) ) |
| 130 |
127 128 129
|
mp2b |
⊢ ( 𝑢 ∈ ( ◡ ♯ “ { 𝑃 } ) ↔ ( 𝑢 ∈ V ∧ ( ♯ ‘ 𝑢 ) = 𝑃 ) ) |
| 131 |
130
|
simprbi |
⊢ ( 𝑢 ∈ ( ◡ ♯ “ { 𝑃 } ) → ( ♯ ‘ 𝑢 ) = 𝑃 ) |
| 132 |
126 131
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( ♯ ‘ 𝑢 ) = 𝑃 ) |
| 133 |
132
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( 0 ..^ ( ♯ ‘ 𝑢 ) ) = ( 0 ..^ 𝑃 ) ) |
| 134 |
133
|
fneq2d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( 𝑢 Fn ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ↔ 𝑢 Fn ( 0 ..^ 𝑃 ) ) ) |
| 135 |
125 134
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → 𝑢 Fn ( 0 ..^ 𝑃 ) ) |
| 136 |
135
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → 𝑢 Fn ( 0 ..^ 𝑃 ) ) |
| 137 |
|
f1ofn |
⊢ ( 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) → 𝑓 Fn ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) |
| 138 |
80 137
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → 𝑓 Fn ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) |
| 139 |
48 133
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → dom 𝑢 = ( 0 ..^ 𝑃 ) ) |
| 140 |
139
|
ineq1d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( dom 𝑢 ∩ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = ( ( 0 ..^ 𝑃 ) ∩ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) ) |
| 141 |
81
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( dom 𝑢 ∩ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = ∅ ) |
| 142 |
140 141
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ( ( 0 ..^ 𝑃 ) ∩ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = ∅ ) |
| 143 |
142
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( 0 ..^ 𝑃 ) ∩ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = ∅ ) |
| 144 |
|
fnunres1 |
⊢ ( ( 𝑢 Fn ( 0 ..^ 𝑃 ) ∧ 𝑓 Fn ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ∧ ( ( 0 ..^ 𝑃 ) ∩ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = ∅ ) → ( ( 𝑢 ∪ 𝑓 ) ↾ ( 0 ..^ 𝑃 ) ) = 𝑢 ) |
| 145 |
136 138 143 144
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( 𝑢 ∪ 𝑓 ) ↾ ( 0 ..^ 𝑃 ) ) = 𝑢 ) |
| 146 |
145
|
coeq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( ( 𝑢 ∪ 𝑓 ) ↾ ( 0 ..^ 𝑃 ) ) ) = ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ 𝑢 ) ) |
| 147 |
|
resco |
⊢ ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ↾ ran 𝑢 ) = ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ ( 𝑄 ↾ ran 𝑢 ) ) |
| 148 |
|
resco |
⊢ ( ( ◡ 𝑢 ∘ ( 𝑀 ‘ 𝑢 ) ) ↾ ran 𝑢 ) = ( ◡ 𝑢 ∘ ( ( 𝑀 ‘ 𝑢 ) ↾ ran 𝑢 ) ) |
| 149 |
148
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ 𝑢 ∘ ( 𝑀 ‘ 𝑢 ) ) ↾ ran 𝑢 ) = ( ◡ 𝑢 ∘ ( ( 𝑀 ‘ 𝑢 ) ↾ ran 𝑢 ) ) ) |
| 150 |
|
cnvun |
⊢ ◡ ( 𝑢 ∪ 𝑓 ) = ( ◡ 𝑢 ∪ ◡ 𝑓 ) |
| 151 |
150
|
reseq1i |
⊢ ( ◡ ( 𝑢 ∪ 𝑓 ) ↾ ran 𝑢 ) = ( ( ◡ 𝑢 ∪ ◡ 𝑓 ) ↾ ran 𝑢 ) |
| 152 |
|
f1ocnv |
⊢ ( 𝑢 : dom 𝑢 –1-1-onto→ ran 𝑢 → ◡ 𝑢 : ran 𝑢 –1-1-onto→ dom 𝑢 ) |
| 153 |
|
f1ofn |
⊢ ( ◡ 𝑢 : ran 𝑢 –1-1-onto→ dom 𝑢 → ◡ 𝑢 Fn ran 𝑢 ) |
| 154 |
77 78 152 153
|
4syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ◡ 𝑢 Fn ran 𝑢 ) |
| 155 |
|
f1ocnv |
⊢ ( 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) → ◡ 𝑓 : ( 𝐷 ∖ ran 𝑢 ) –1-1-onto→ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) |
| 156 |
|
f1ofn |
⊢ ( ◡ 𝑓 : ( 𝐷 ∖ ran 𝑢 ) –1-1-onto→ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) → ◡ 𝑓 Fn ( 𝐷 ∖ ran 𝑢 ) ) |
| 157 |
80 155 156
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ◡ 𝑓 Fn ( 𝐷 ∖ ran 𝑢 ) ) |
| 158 |
|
fnunres1 |
⊢ ( ( ◡ 𝑢 Fn ran 𝑢 ∧ ◡ 𝑓 Fn ( 𝐷 ∖ ran 𝑢 ) ∧ ( ran 𝑢 ∩ ( 𝐷 ∖ ran 𝑢 ) ) = ∅ ) → ( ( ◡ 𝑢 ∪ ◡ 𝑓 ) ↾ ran 𝑢 ) = ◡ 𝑢 ) |
| 159 |
154 157 84 158
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ 𝑢 ∪ ◡ 𝑓 ) ↾ ran 𝑢 ) = ◡ 𝑢 ) |
| 160 |
151 159
|
eqtr2id |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ◡ 𝑢 = ( ◡ ( 𝑢 ∪ 𝑓 ) ↾ ran 𝑢 ) ) |
| 161 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( 𝑀 ‘ 𝑢 ) = 𝑄 ) |
| 162 |
161
|
reseq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( 𝑀 ‘ 𝑢 ) ↾ ran 𝑢 ) = ( 𝑄 ↾ ran 𝑢 ) ) |
| 163 |
160 162
|
coeq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ◡ 𝑢 ∘ ( ( 𝑀 ‘ 𝑢 ) ↾ ran 𝑢 ) ) = ( ( ◡ ( 𝑢 ∪ 𝑓 ) ↾ ran 𝑢 ) ∘ ( 𝑄 ↾ ran 𝑢 ) ) ) |
| 164 |
55
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → 𝐷 ∈ Fin ) |
| 165 |
123
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → 𝑢 ∈ Word 𝐷 ) |
| 166 |
4 164 165 77
|
tocycfvres1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( 𝑀 ‘ 𝑢 ) ↾ ran 𝑢 ) = ( ( 𝑢 cyclShift 1 ) ∘ ◡ 𝑢 ) ) |
| 167 |
162 166
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( 𝑄 ↾ ran 𝑢 ) = ( ( 𝑢 cyclShift 1 ) ∘ ◡ 𝑢 ) ) |
| 168 |
167
|
rneqd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ran ( 𝑄 ↾ ran 𝑢 ) = ran ( ( 𝑢 cyclShift 1 ) ∘ ◡ 𝑢 ) ) |
| 169 |
|
1zzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → 1 ∈ ℤ ) |
| 170 |
|
cshf1o |
⊢ ( ( 𝑢 ∈ Word 𝐷 ∧ 𝑢 : dom 𝑢 –1-1→ 𝐷 ∧ 1 ∈ ℤ ) → ( 𝑢 cyclShift 1 ) : dom 𝑢 –1-1-onto→ ran 𝑢 ) |
| 171 |
165 77 169 170
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( 𝑢 cyclShift 1 ) : dom 𝑢 –1-1-onto→ ran 𝑢 ) |
| 172 |
79 152
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ◡ 𝑢 : ran 𝑢 –1-1-onto→ dom 𝑢 ) |
| 173 |
|
f1oco |
⊢ ( ( ( 𝑢 cyclShift 1 ) : dom 𝑢 –1-1-onto→ ran 𝑢 ∧ ◡ 𝑢 : ran 𝑢 –1-1-onto→ dom 𝑢 ) → ( ( 𝑢 cyclShift 1 ) ∘ ◡ 𝑢 ) : ran 𝑢 –1-1-onto→ ran 𝑢 ) |
| 174 |
171 172 173
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( 𝑢 cyclShift 1 ) ∘ ◡ 𝑢 ) : ran 𝑢 –1-1-onto→ ran 𝑢 ) |
| 175 |
|
f1ofo |
⊢ ( ( ( 𝑢 cyclShift 1 ) ∘ ◡ 𝑢 ) : ran 𝑢 –1-1-onto→ ran 𝑢 → ( ( 𝑢 cyclShift 1 ) ∘ ◡ 𝑢 ) : ran 𝑢 –onto→ ran 𝑢 ) |
| 176 |
|
forn |
⊢ ( ( ( 𝑢 cyclShift 1 ) ∘ ◡ 𝑢 ) : ran 𝑢 –onto→ ran 𝑢 → ran ( ( 𝑢 cyclShift 1 ) ∘ ◡ 𝑢 ) = ran 𝑢 ) |
| 177 |
174 175 176
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ran ( ( 𝑢 cyclShift 1 ) ∘ ◡ 𝑢 ) = ran 𝑢 ) |
| 178 |
168 177
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ran ( 𝑄 ↾ ran 𝑢 ) = ran 𝑢 ) |
| 179 |
|
ssid |
⊢ ran 𝑢 ⊆ ran 𝑢 |
| 180 |
178 179
|
eqsstrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ran ( 𝑄 ↾ ran 𝑢 ) ⊆ ran 𝑢 ) |
| 181 |
|
cores |
⊢ ( ran ( 𝑄 ↾ ran 𝑢 ) ⊆ ran 𝑢 → ( ( ◡ ( 𝑢 ∪ 𝑓 ) ↾ ran 𝑢 ) ∘ ( 𝑄 ↾ ran 𝑢 ) ) = ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ ( 𝑄 ↾ ran 𝑢 ) ) ) |
| 182 |
180 181
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ ( 𝑢 ∪ 𝑓 ) ↾ ran 𝑢 ) ∘ ( 𝑄 ↾ ran 𝑢 ) ) = ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ ( 𝑄 ↾ ran 𝑢 ) ) ) |
| 183 |
149 163 182
|
3eqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ ( 𝑄 ↾ ran 𝑢 ) ) = ( ( ◡ 𝑢 ∘ ( 𝑀 ‘ 𝑢 ) ) ↾ ran 𝑢 ) ) |
| 184 |
147 183
|
eqtrid |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ↾ ran 𝑢 ) = ( ( ◡ 𝑢 ∘ ( 𝑀 ‘ 𝑢 ) ) ↾ ran 𝑢 ) ) |
| 185 |
184
|
coeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ↾ ran 𝑢 ) ∘ 𝑢 ) = ( ( ( ◡ 𝑢 ∘ ( 𝑀 ‘ 𝑢 ) ) ↾ ran 𝑢 ) ∘ 𝑢 ) ) |
| 186 |
|
cores |
⊢ ( ran 𝑢 ⊆ ran 𝑢 → ( ( ( ◡ 𝑢 ∘ ( 𝑀 ‘ 𝑢 ) ) ↾ ran 𝑢 ) ∘ 𝑢 ) = ( ( ◡ 𝑢 ∘ ( 𝑀 ‘ 𝑢 ) ) ∘ 𝑢 ) ) |
| 187 |
179 186
|
mp1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ( ◡ 𝑢 ∘ ( 𝑀 ‘ 𝑢 ) ) ↾ ran 𝑢 ) ∘ 𝑢 ) = ( ( ◡ 𝑢 ∘ ( 𝑀 ‘ 𝑢 ) ) ∘ 𝑢 ) ) |
| 188 |
185 187
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ↾ ran 𝑢 ) ∘ 𝑢 ) = ( ( ◡ 𝑢 ∘ ( 𝑀 ‘ 𝑢 ) ) ∘ 𝑢 ) ) |
| 189 |
|
cores |
⊢ ( ran 𝑢 ⊆ ran 𝑢 → ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ↾ ran 𝑢 ) ∘ 𝑢 ) = ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ 𝑢 ) ) |
| 190 |
179 189
|
mp1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ↾ ran 𝑢 ) ∘ 𝑢 ) = ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ 𝑢 ) ) |
| 191 |
132
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ♯ ‘ 𝑢 ) = 𝑃 ) |
| 192 |
1 2 3 4 164 165 77 191
|
cycpmconjslem1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ 𝑢 ∘ ( 𝑀 ‘ 𝑢 ) ) ∘ 𝑢 ) = ( ( I ↾ ( 0 ..^ 𝑃 ) ) cyclShift 1 ) ) |
| 193 |
188 190 192
|
3eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ 𝑢 ) = ( ( I ↾ ( 0 ..^ 𝑃 ) ) cyclShift 1 ) ) |
| 194 |
122 146 193
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ↾ ( 0 ..^ 𝑃 ) ) = ( ( I ↾ ( 0 ..^ 𝑃 ) ) cyclShift 1 ) ) |
| 195 |
|
resco |
⊢ ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ↾ ( 𝑃 ..^ 𝑁 ) ) = ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( ( 𝑢 ∪ 𝑓 ) ↾ ( 𝑃 ..^ 𝑁 ) ) ) |
| 196 |
139
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → dom 𝑢 = ( 0 ..^ 𝑃 ) ) |
| 197 |
196
|
difeq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) = ( ( 0 ..^ 𝑁 ) ∖ ( 0 ..^ 𝑃 ) ) ) |
| 198 |
|
fzodif1 |
⊢ ( 𝑃 ∈ ( 0 ... 𝑁 ) → ( ( 0 ..^ 𝑁 ) ∖ ( 0 ..^ 𝑃 ) ) = ( 𝑃 ..^ 𝑁 ) ) |
| 199 |
8 198
|
syl |
⊢ ( 𝜑 → ( ( 0 ..^ 𝑁 ) ∖ ( 0 ..^ 𝑃 ) ) = ( 𝑃 ..^ 𝑁 ) ) |
| 200 |
199
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( 0 ..^ 𝑁 ) ∖ ( 0 ..^ 𝑃 ) ) = ( 𝑃 ..^ 𝑁 ) ) |
| 201 |
197 200
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) = ( 𝑃 ..^ 𝑁 ) ) |
| 202 |
201
|
reseq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( 𝑢 ∪ 𝑓 ) ↾ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = ( ( 𝑢 ∪ 𝑓 ) ↾ ( 𝑃 ..^ 𝑁 ) ) ) |
| 203 |
|
fnunres2 |
⊢ ( ( 𝑢 Fn ( 0 ..^ 𝑃 ) ∧ 𝑓 Fn ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ∧ ( ( 0 ..^ 𝑃 ) ∩ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = ∅ ) → ( ( 𝑢 ∪ 𝑓 ) ↾ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = 𝑓 ) |
| 204 |
136 138 143 203
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( 𝑢 ∪ 𝑓 ) ↾ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = 𝑓 ) |
| 205 |
202 204
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( 𝑢 ∪ 𝑓 ) ↾ ( 𝑃 ..^ 𝑁 ) ) = 𝑓 ) |
| 206 |
205
|
coeq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( ( 𝑢 ∪ 𝑓 ) ↾ ( 𝑃 ..^ 𝑁 ) ) ) = ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ 𝑓 ) ) |
| 207 |
195 206
|
eqtrid |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ↾ ( 𝑃 ..^ 𝑁 ) ) = ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ 𝑓 ) ) |
| 208 |
150
|
reseq1i |
⊢ ( ◡ ( 𝑢 ∪ 𝑓 ) ↾ ( 𝐷 ∖ ran 𝑢 ) ) = ( ( ◡ 𝑢 ∪ ◡ 𝑓 ) ↾ ( 𝐷 ∖ ran 𝑢 ) ) |
| 209 |
|
fnunres2 |
⊢ ( ( ◡ 𝑢 Fn ran 𝑢 ∧ ◡ 𝑓 Fn ( 𝐷 ∖ ran 𝑢 ) ∧ ( ran 𝑢 ∩ ( 𝐷 ∖ ran 𝑢 ) ) = ∅ ) → ( ( ◡ 𝑢 ∪ ◡ 𝑓 ) ↾ ( 𝐷 ∖ ran 𝑢 ) ) = ◡ 𝑓 ) |
| 210 |
154 157 84 209
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ 𝑢 ∪ ◡ 𝑓 ) ↾ ( 𝐷 ∖ ran 𝑢 ) ) = ◡ 𝑓 ) |
| 211 |
208 210
|
eqtrid |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ◡ ( 𝑢 ∪ 𝑓 ) ↾ ( 𝐷 ∖ ran 𝑢 ) ) = ◡ 𝑓 ) |
| 212 |
161
|
reseq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( 𝑀 ‘ 𝑢 ) ↾ ( 𝐷 ∖ ran 𝑢 ) ) = ( 𝑄 ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) |
| 213 |
4 164 165 77
|
tocycfvres2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( 𝑀 ‘ 𝑢 ) ↾ ( 𝐷 ∖ ran 𝑢 ) ) = ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) |
| 214 |
212 213
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( 𝑄 ↾ ( 𝐷 ∖ ran 𝑢 ) ) = ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) |
| 215 |
211 214
|
coeq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ ( 𝑢 ∪ 𝑓 ) ↾ ( 𝐷 ∖ ran 𝑢 ) ) ∘ ( 𝑄 ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) = ( ◡ 𝑓 ∘ ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) ) |
| 216 |
214
|
rneqd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ran ( 𝑄 ↾ ( 𝐷 ∖ ran 𝑢 ) ) = ran ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) |
| 217 |
|
rnresi |
⊢ ran ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) = ( 𝐷 ∖ ran 𝑢 ) |
| 218 |
217
|
eqimssi |
⊢ ran ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ⊆ ( 𝐷 ∖ ran 𝑢 ) |
| 219 |
216 218
|
eqsstrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ran ( 𝑄 ↾ ( 𝐷 ∖ ran 𝑢 ) ) ⊆ ( 𝐷 ∖ ran 𝑢 ) ) |
| 220 |
|
cores |
⊢ ( ran ( 𝑄 ↾ ( 𝐷 ∖ ran 𝑢 ) ) ⊆ ( 𝐷 ∖ ran 𝑢 ) → ( ( ◡ ( 𝑢 ∪ 𝑓 ) ↾ ( 𝐷 ∖ ran 𝑢 ) ) ∘ ( 𝑄 ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) = ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ ( 𝑄 ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) ) |
| 221 |
219 220
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ ( 𝑢 ∪ 𝑓 ) ↾ ( 𝐷 ∖ ran 𝑢 ) ) ∘ ( 𝑄 ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) = ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ ( 𝑄 ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) ) |
| 222 |
|
resco |
⊢ ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ↾ ( 𝐷 ∖ ran 𝑢 ) ) = ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ ( 𝑄 ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) |
| 223 |
221 222
|
eqtr4di |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ ( 𝑢 ∪ 𝑓 ) ↾ ( 𝐷 ∖ ran 𝑢 ) ) ∘ ( 𝑄 ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) = ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) |
| 224 |
215 223
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ◡ 𝑓 ∘ ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) = ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) |
| 225 |
224
|
coeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ 𝑓 ∘ ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) ∘ 𝑓 ) = ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ↾ ( 𝐷 ∖ ran 𝑢 ) ) ∘ 𝑓 ) ) |
| 226 |
|
f1of |
⊢ ( ◡ 𝑓 : ( 𝐷 ∖ ran 𝑢 ) –1-1-onto→ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) → ◡ 𝑓 : ( 𝐷 ∖ ran 𝑢 ) ⟶ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) |
| 227 |
|
fcoi1 |
⊢ ( ◡ 𝑓 : ( 𝐷 ∖ ran 𝑢 ) ⟶ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) → ( ◡ 𝑓 ∘ ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) = ◡ 𝑓 ) |
| 228 |
80 155 226 227
|
4syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ◡ 𝑓 ∘ ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) = ◡ 𝑓 ) |
| 229 |
228
|
coeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ 𝑓 ∘ ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) ∘ 𝑓 ) = ( ◡ 𝑓 ∘ 𝑓 ) ) |
| 230 |
|
f1ococnv1 |
⊢ ( 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) → ( ◡ 𝑓 ∘ 𝑓 ) = ( I ↾ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) ) |
| 231 |
80 230
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ◡ 𝑓 ∘ 𝑓 ) = ( I ↾ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) ) |
| 232 |
201
|
reseq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( I ↾ ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ) = ( I ↾ ( 𝑃 ..^ 𝑁 ) ) ) |
| 233 |
229 231 232
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ 𝑓 ∘ ( I ↾ ( 𝐷 ∖ ran 𝑢 ) ) ) ∘ 𝑓 ) = ( I ↾ ( 𝑃 ..^ 𝑁 ) ) ) |
| 234 |
|
f1of |
⊢ ( 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) → 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ⟶ ( 𝐷 ∖ ran 𝑢 ) ) |
| 235 |
|
frn |
⊢ ( 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) ⟶ ( 𝐷 ∖ ran 𝑢 ) → ran 𝑓 ⊆ ( 𝐷 ∖ ran 𝑢 ) ) |
| 236 |
|
cores |
⊢ ( ran 𝑓 ⊆ ( 𝐷 ∖ ran 𝑢 ) → ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ↾ ( 𝐷 ∖ ran 𝑢 ) ) ∘ 𝑓 ) = ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ 𝑓 ) ) |
| 237 |
80 234 235 236
|
4syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ↾ ( 𝐷 ∖ ran 𝑢 ) ) ∘ 𝑓 ) = ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ 𝑓 ) ) |
| 238 |
225 233 237
|
3eqtr3rd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ 𝑓 ) = ( I ↾ ( 𝑃 ..^ 𝑁 ) ) ) |
| 239 |
207 238
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ↾ ( 𝑃 ..^ 𝑁 ) ) = ( I ↾ ( 𝑃 ..^ 𝑁 ) ) ) |
| 240 |
194 239
|
uneq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ↾ ( 0 ..^ 𝑃 ) ) ∪ ( ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ↾ ( 𝑃 ..^ 𝑁 ) ) ) = ( ( ( I ↾ ( 0 ..^ 𝑃 ) ) cyclShift 1 ) ∪ ( I ↾ ( 𝑃 ..^ 𝑁 ) ) ) ) |
| 241 |
120 240
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) = ( ( ( I ↾ ( 0 ..^ 𝑃 ) ) cyclShift 1 ) ∪ ( I ↾ ( 𝑃 ..^ 𝑁 ) ) ) ) |
| 242 |
|
vex |
⊢ 𝑢 ∈ V |
| 243 |
|
vex |
⊢ 𝑓 ∈ V |
| 244 |
242 243
|
unex |
⊢ ( 𝑢 ∪ 𝑓 ) ∈ V |
| 245 |
|
f1oeq1 |
⊢ ( 𝑞 = ( 𝑢 ∪ 𝑓 ) → ( 𝑞 : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷 ↔ ( 𝑢 ∪ 𝑓 ) : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷 ) ) |
| 246 |
|
cnveq |
⊢ ( 𝑞 = ( 𝑢 ∪ 𝑓 ) → ◡ 𝑞 = ◡ ( 𝑢 ∪ 𝑓 ) ) |
| 247 |
246
|
coeq1d |
⊢ ( 𝑞 = ( 𝑢 ∪ 𝑓 ) → ( ◡ 𝑞 ∘ 𝑄 ) = ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ) |
| 248 |
|
id |
⊢ ( 𝑞 = ( 𝑢 ∪ 𝑓 ) → 𝑞 = ( 𝑢 ∪ 𝑓 ) ) |
| 249 |
247 248
|
coeq12d |
⊢ ( 𝑞 = ( 𝑢 ∪ 𝑓 ) → ( ( ◡ 𝑞 ∘ 𝑄 ) ∘ 𝑞 ) = ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) ) |
| 250 |
249
|
eqeq1d |
⊢ ( 𝑞 = ( 𝑢 ∪ 𝑓 ) → ( ( ( ◡ 𝑞 ∘ 𝑄 ) ∘ 𝑞 ) = ( ( ( I ↾ ( 0 ..^ 𝑃 ) ) cyclShift 1 ) ∪ ( I ↾ ( 𝑃 ..^ 𝑁 ) ) ) ↔ ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) = ( ( ( I ↾ ( 0 ..^ 𝑃 ) ) cyclShift 1 ) ∪ ( I ↾ ( 𝑃 ..^ 𝑁 ) ) ) ) ) |
| 251 |
245 250
|
anbi12d |
⊢ ( 𝑞 = ( 𝑢 ∪ 𝑓 ) → ( ( 𝑞 : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷 ∧ ( ( ◡ 𝑞 ∘ 𝑄 ) ∘ 𝑞 ) = ( ( ( I ↾ ( 0 ..^ 𝑃 ) ) cyclShift 1 ) ∪ ( I ↾ ( 𝑃 ..^ 𝑁 ) ) ) ) ↔ ( ( 𝑢 ∪ 𝑓 ) : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷 ∧ ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) = ( ( ( I ↾ ( 0 ..^ 𝑃 ) ) cyclShift 1 ) ∪ ( I ↾ ( 𝑃 ..^ 𝑁 ) ) ) ) ) ) |
| 252 |
244 251
|
spcev |
⊢ ( ( ( 𝑢 ∪ 𝑓 ) : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷 ∧ ( ( ◡ ( 𝑢 ∪ 𝑓 ) ∘ 𝑄 ) ∘ ( 𝑢 ∪ 𝑓 ) ) = ( ( ( I ↾ ( 0 ..^ 𝑃 ) ) cyclShift 1 ) ∪ ( I ↾ ( 𝑃 ..^ 𝑁 ) ) ) ) → ∃ 𝑞 ( 𝑞 : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷 ∧ ( ( ◡ 𝑞 ∘ 𝑄 ) ∘ 𝑞 ) = ( ( ( I ↾ ( 0 ..^ 𝑃 ) ) cyclShift 1 ) ∪ ( I ↾ ( 𝑃 ..^ 𝑁 ) ) ) ) ) |
| 253 |
95 241 252
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) ∧ 𝑓 : ( ( 0 ..^ 𝑁 ) ∖ dom 𝑢 ) –1-1-onto→ ( 𝐷 ∖ ran 𝑢 ) ) → ∃ 𝑞 ( 𝑞 : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷 ∧ ( ( ◡ 𝑞 ∘ 𝑄 ) ∘ 𝑞 ) = ( ( ( I ↾ ( 0 ..^ 𝑃 ) ) cyclShift 1 ) ∪ ( I ↾ ( 𝑃 ..^ 𝑁 ) ) ) ) ) |
| 254 |
76 253
|
exlimddv |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ) ∧ ( 𝑀 ‘ 𝑢 ) = 𝑄 ) → ∃ 𝑞 ( 𝑞 : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷 ∧ ( ( ◡ 𝑞 ∘ 𝑄 ) ∘ 𝑞 ) = ( ( ( I ↾ ( 0 ..^ 𝑃 ) ) cyclShift 1 ) ∪ ( I ↾ ( 𝑃 ..^ 𝑁 ) ) ) ) ) |
| 255 |
|
nfcv |
⊢ Ⅎ 𝑢 𝑀 |
| 256 |
4 2 5
|
tocycf |
⊢ ( 𝐷 ∈ Fin → 𝑀 : { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⟶ 𝐵 ) |
| 257 |
|
ffn |
⊢ ( 𝑀 : { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⟶ 𝐵 → 𝑀 Fn { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
| 258 |
9 256 257
|
3syl |
⊢ ( 𝜑 → 𝑀 Fn { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
| 259 |
10 1
|
eleqtrdi |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑀 “ ( ◡ ♯ “ { 𝑃 } ) ) ) |
| 260 |
255 258 259
|
fvelimad |
⊢ ( 𝜑 → ∃ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 𝑃 } ) ) ( 𝑀 ‘ 𝑢 ) = 𝑄 ) |
| 261 |
254 260
|
r19.29a |
⊢ ( 𝜑 → ∃ 𝑞 ( 𝑞 : ( 0 ..^ 𝑁 ) –1-1-onto→ 𝐷 ∧ ( ( ◡ 𝑞 ∘ 𝑄 ) ∘ 𝑞 ) = ( ( ( I ↾ ( 0 ..^ 𝑃 ) ) cyclShift 1 ) ∪ ( I ↾ ( 𝑃 ..^ 𝑁 ) ) ) ) ) |