| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cycpmconjs.c |
|- C = ( M " ( `' # " { P } ) ) |
| 2 |
|
cycpmconjs.s |
|- S = ( SymGrp ` D ) |
| 3 |
|
cycpmconjs.n |
|- N = ( # ` D ) |
| 4 |
|
cycpmconjs.m |
|- M = ( toCyc ` D ) |
| 5 |
|
cycpmconjs.b |
|- B = ( Base ` S ) |
| 6 |
|
cycpmconjs.a |
|- .+ = ( +g ` S ) |
| 7 |
|
cycpmconjs.l |
|- .- = ( -g ` S ) |
| 8 |
|
cycpmconjs.p |
|- ( ph -> P e. ( 0 ... N ) ) |
| 9 |
|
cycpmconjs.d |
|- ( ph -> D e. Fin ) |
| 10 |
|
cycpmconjs.q |
|- ( ph -> Q e. C ) |
| 11 |
|
fzofi |
|- ( 0 ..^ N ) e. Fin |
| 12 |
|
diffi |
|- ( ( 0 ..^ N ) e. Fin -> ( ( 0 ..^ N ) \ dom u ) e. Fin ) |
| 13 |
11 12
|
mp1i |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( ( 0 ..^ N ) \ dom u ) e. Fin ) |
| 14 |
|
diffi |
|- ( D e. Fin -> ( D \ ran u ) e. Fin ) |
| 15 |
9 14
|
syl |
|- ( ph -> ( D \ ran u ) e. Fin ) |
| 16 |
15
|
ad2antrr |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( D \ ran u ) e. Fin ) |
| 17 |
|
hashcl |
|- ( D e. Fin -> ( # ` D ) e. NN0 ) |
| 18 |
9 17
|
syl |
|- ( ph -> ( # ` D ) e. NN0 ) |
| 19 |
3 18
|
eqeltrid |
|- ( ph -> N e. NN0 ) |
| 20 |
|
hashfzo0 |
|- ( N e. NN0 -> ( # ` ( 0 ..^ N ) ) = N ) |
| 21 |
19 20
|
syl |
|- ( ph -> ( # ` ( 0 ..^ N ) ) = N ) |
| 22 |
21 3
|
eqtrdi |
|- ( ph -> ( # ` ( 0 ..^ N ) ) = ( # ` D ) ) |
| 23 |
22
|
ad2antrr |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( # ` ( 0 ..^ N ) ) = ( # ` D ) ) |
| 24 |
|
simplr |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) |
| 25 |
24
|
elin1d |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> u e. { w e. Word D | w : dom w -1-1-> D } ) |
| 26 |
|
elrabi |
|- ( u e. { w e. Word D | w : dom w -1-1-> D } -> u e. Word D ) |
| 27 |
|
wrdfin |
|- ( u e. Word D -> u e. Fin ) |
| 28 |
25 26 27
|
3syl |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> u e. Fin ) |
| 29 |
|
id |
|- ( w = u -> w = u ) |
| 30 |
|
dmeq |
|- ( w = u -> dom w = dom u ) |
| 31 |
|
eqidd |
|- ( w = u -> D = D ) |
| 32 |
29 30 31
|
f1eq123d |
|- ( w = u -> ( w : dom w -1-1-> D <-> u : dom u -1-1-> D ) ) |
| 33 |
32
|
elrab |
|- ( u e. { w e. Word D | w : dom w -1-1-> D } <-> ( u e. Word D /\ u : dom u -1-1-> D ) ) |
| 34 |
33
|
simprbi |
|- ( u e. { w e. Word D | w : dom w -1-1-> D } -> u : dom u -1-1-> D ) |
| 35 |
25 34
|
syl |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> u : dom u -1-1-> D ) |
| 36 |
|
f1fun |
|- ( u : dom u -1-1-> D -> Fun u ) |
| 37 |
35 36
|
syl |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> Fun u ) |
| 38 |
|
hashfun |
|- ( u e. Fin -> ( Fun u <-> ( # ` u ) = ( # ` dom u ) ) ) |
| 39 |
38
|
biimpa |
|- ( ( u e. Fin /\ Fun u ) -> ( # ` u ) = ( # ` dom u ) ) |
| 40 |
28 37 39
|
syl2anc |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( # ` u ) = ( # ` dom u ) ) |
| 41 |
24
|
dmexd |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> dom u e. _V ) |
| 42 |
|
hashf1rn |
|- ( ( dom u e. _V /\ u : dom u -1-1-> D ) -> ( # ` u ) = ( # ` ran u ) ) |
| 43 |
41 35 42
|
syl2anc |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( # ` u ) = ( # ` ran u ) ) |
| 44 |
40 43
|
eqtr3d |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( # ` dom u ) = ( # ` ran u ) ) |
| 45 |
23 44
|
oveq12d |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( ( # ` ( 0 ..^ N ) ) - ( # ` dom u ) ) = ( ( # ` D ) - ( # ` ran u ) ) ) |
| 46 |
11
|
a1i |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( 0 ..^ N ) e. Fin ) |
| 47 |
|
wrddm |
|- ( u e. Word D -> dom u = ( 0 ..^ ( # ` u ) ) ) |
| 48 |
25 26 47
|
3syl |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> dom u = ( 0 ..^ ( # ` u ) ) ) |
| 49 |
|
hashcl |
|- ( u e. Fin -> ( # ` u ) e. NN0 ) |
| 50 |
25 26 27 49
|
4syl |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( # ` u ) e. NN0 ) |
| 51 |
50
|
nn0zd |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( # ` u ) e. ZZ ) |
| 52 |
18
|
nn0zd |
|- ( ph -> ( # ` D ) e. ZZ ) |
| 53 |
3 52
|
eqeltrid |
|- ( ph -> N e. ZZ ) |
| 54 |
53
|
ad2antrr |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> N e. ZZ ) |
| 55 |
9
|
ad2antrr |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> D e. Fin ) |
| 56 |
|
wrdf |
|- ( u e. Word D -> u : ( 0 ..^ ( # ` u ) ) --> D ) |
| 57 |
56
|
frnd |
|- ( u e. Word D -> ran u C_ D ) |
| 58 |
25 26 57
|
3syl |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ran u C_ D ) |
| 59 |
|
hashss |
|- ( ( D e. Fin /\ ran u C_ D ) -> ( # ` ran u ) <_ ( # ` D ) ) |
| 60 |
55 58 59
|
syl2anc |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( # ` ran u ) <_ ( # ` D ) ) |
| 61 |
3
|
a1i |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> N = ( # ` D ) ) |
| 62 |
60 43 61
|
3brtr4d |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( # ` u ) <_ N ) |
| 63 |
|
eluz1 |
|- ( ( # ` u ) e. ZZ -> ( N e. ( ZZ>= ` ( # ` u ) ) <-> ( N e. ZZ /\ ( # ` u ) <_ N ) ) ) |
| 64 |
63
|
biimpar |
|- ( ( ( # ` u ) e. ZZ /\ ( N e. ZZ /\ ( # ` u ) <_ N ) ) -> N e. ( ZZ>= ` ( # ` u ) ) ) |
| 65 |
51 54 62 64
|
syl12anc |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> N e. ( ZZ>= ` ( # ` u ) ) ) |
| 66 |
|
fzoss2 |
|- ( N e. ( ZZ>= ` ( # ` u ) ) -> ( 0 ..^ ( # ` u ) ) C_ ( 0 ..^ N ) ) |
| 67 |
65 66
|
syl |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( 0 ..^ ( # ` u ) ) C_ ( 0 ..^ N ) ) |
| 68 |
48 67
|
eqsstrd |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> dom u C_ ( 0 ..^ N ) ) |
| 69 |
|
hashssdif |
|- ( ( ( 0 ..^ N ) e. Fin /\ dom u C_ ( 0 ..^ N ) ) -> ( # ` ( ( 0 ..^ N ) \ dom u ) ) = ( ( # ` ( 0 ..^ N ) ) - ( # ` dom u ) ) ) |
| 70 |
46 68 69
|
syl2anc |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( # ` ( ( 0 ..^ N ) \ dom u ) ) = ( ( # ` ( 0 ..^ N ) ) - ( # ` dom u ) ) ) |
| 71 |
|
hashssdif |
|- ( ( D e. Fin /\ ran u C_ D ) -> ( # ` ( D \ ran u ) ) = ( ( # ` D ) - ( # ` ran u ) ) ) |
| 72 |
55 58 71
|
syl2anc |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( # ` ( D \ ran u ) ) = ( ( # ` D ) - ( # ` ran u ) ) ) |
| 73 |
45 70 72
|
3eqtr4d |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( # ` ( ( 0 ..^ N ) \ dom u ) ) = ( # ` ( D \ ran u ) ) ) |
| 74 |
|
hasheqf1o |
|- ( ( ( ( 0 ..^ N ) \ dom u ) e. Fin /\ ( D \ ran u ) e. Fin ) -> ( ( # ` ( ( 0 ..^ N ) \ dom u ) ) = ( # ` ( D \ ran u ) ) <-> E. f f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) ) |
| 75 |
74
|
biimpa |
|- ( ( ( ( ( 0 ..^ N ) \ dom u ) e. Fin /\ ( D \ ran u ) e. Fin ) /\ ( # ` ( ( 0 ..^ N ) \ dom u ) ) = ( # ` ( D \ ran u ) ) ) -> E. f f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) |
| 76 |
13 16 73 75
|
syl21anc |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> E. f f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) |
| 77 |
35
|
adantr |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> u : dom u -1-1-> D ) |
| 78 |
|
f1f1orn |
|- ( u : dom u -1-1-> D -> u : dom u -1-1-onto-> ran u ) |
| 79 |
77 78
|
syl |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> u : dom u -1-1-onto-> ran u ) |
| 80 |
|
simpr |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) |
| 81 |
|
disjdif |
|- ( dom u i^i ( ( 0 ..^ N ) \ dom u ) ) = (/) |
| 82 |
81
|
a1i |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( dom u i^i ( ( 0 ..^ N ) \ dom u ) ) = (/) ) |
| 83 |
|
disjdif |
|- ( ran u i^i ( D \ ran u ) ) = (/) |
| 84 |
83
|
a1i |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ran u i^i ( D \ ran u ) ) = (/) ) |
| 85 |
|
f1oun |
|- ( ( ( u : dom u -1-1-onto-> ran u /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) /\ ( ( dom u i^i ( ( 0 ..^ N ) \ dom u ) ) = (/) /\ ( ran u i^i ( D \ ran u ) ) = (/) ) ) -> ( u u. f ) : ( dom u u. ( ( 0 ..^ N ) \ dom u ) ) -1-1-onto-> ( ran u u. ( D \ ran u ) ) ) |
| 86 |
79 80 82 84 85
|
syl22anc |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( u u. f ) : ( dom u u. ( ( 0 ..^ N ) \ dom u ) ) -1-1-onto-> ( ran u u. ( D \ ran u ) ) ) |
| 87 |
|
eqidd |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( u u. f ) = ( u u. f ) ) |
| 88 |
68
|
adantr |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> dom u C_ ( 0 ..^ N ) ) |
| 89 |
|
undif |
|- ( dom u C_ ( 0 ..^ N ) <-> ( dom u u. ( ( 0 ..^ N ) \ dom u ) ) = ( 0 ..^ N ) ) |
| 90 |
88 89
|
sylib |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( dom u u. ( ( 0 ..^ N ) \ dom u ) ) = ( 0 ..^ N ) ) |
| 91 |
|
undif |
|- ( ran u C_ D <-> ( ran u u. ( D \ ran u ) ) = D ) |
| 92 |
58 91
|
sylib |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( ran u u. ( D \ ran u ) ) = D ) |
| 93 |
92
|
adantr |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ran u u. ( D \ ran u ) ) = D ) |
| 94 |
87 90 93
|
f1oeq123d |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( u u. f ) : ( dom u u. ( ( 0 ..^ N ) \ dom u ) ) -1-1-onto-> ( ran u u. ( D \ ran u ) ) <-> ( u u. f ) : ( 0 ..^ N ) -1-1-onto-> D ) ) |
| 95 |
86 94
|
mpbid |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( u u. f ) : ( 0 ..^ N ) -1-1-onto-> D ) |
| 96 |
|
f1ocnv |
|- ( ( u u. f ) : ( 0 ..^ N ) -1-1-onto-> D -> `' ( u u. f ) : D -1-1-onto-> ( 0 ..^ N ) ) |
| 97 |
95 96
|
syl |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> `' ( u u. f ) : D -1-1-onto-> ( 0 ..^ N ) ) |
| 98 |
1 2 3 4 5
|
cycpmgcl |
|- ( ( D e. Fin /\ P e. ( 0 ... N ) ) -> C C_ B ) |
| 99 |
9 8 98
|
syl2anc |
|- ( ph -> C C_ B ) |
| 100 |
99 10
|
sseldd |
|- ( ph -> Q e. B ) |
| 101 |
2 5
|
symgbasf1o |
|- ( Q e. B -> Q : D -1-1-onto-> D ) |
| 102 |
100 101
|
syl |
|- ( ph -> Q : D -1-1-onto-> D ) |
| 103 |
102
|
ad3antrrr |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> Q : D -1-1-onto-> D ) |
| 104 |
|
f1oco |
|- ( ( `' ( u u. f ) : D -1-1-onto-> ( 0 ..^ N ) /\ Q : D -1-1-onto-> D ) -> ( `' ( u u. f ) o. Q ) : D -1-1-onto-> ( 0 ..^ N ) ) |
| 105 |
97 103 104
|
syl2anc |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( `' ( u u. f ) o. Q ) : D -1-1-onto-> ( 0 ..^ N ) ) |
| 106 |
|
f1oco |
|- ( ( ( `' ( u u. f ) o. Q ) : D -1-1-onto-> ( 0 ..^ N ) /\ ( u u. f ) : ( 0 ..^ N ) -1-1-onto-> D ) -> ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) : ( 0 ..^ N ) -1-1-onto-> ( 0 ..^ N ) ) |
| 107 |
105 95 106
|
syl2anc |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) : ( 0 ..^ N ) -1-1-onto-> ( 0 ..^ N ) ) |
| 108 |
|
f1ofun |
|- ( ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) : ( 0 ..^ N ) -1-1-onto-> ( 0 ..^ N ) -> Fun ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) ) |
| 109 |
|
funrel |
|- ( Fun ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) -> Rel ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) ) |
| 110 |
107 108 109
|
3syl |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> Rel ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) ) |
| 111 |
|
f1odm |
|- ( ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) : ( 0 ..^ N ) -1-1-onto-> ( 0 ..^ N ) -> dom ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) = ( 0 ..^ N ) ) |
| 112 |
107 111
|
syl |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> dom ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) = ( 0 ..^ N ) ) |
| 113 |
|
fzosplit |
|- ( P e. ( 0 ... N ) -> ( 0 ..^ N ) = ( ( 0 ..^ P ) u. ( P ..^ N ) ) ) |
| 114 |
8 113
|
syl |
|- ( ph -> ( 0 ..^ N ) = ( ( 0 ..^ P ) u. ( P ..^ N ) ) ) |
| 115 |
114
|
ad3antrrr |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( 0 ..^ N ) = ( ( 0 ..^ P ) u. ( P ..^ N ) ) ) |
| 116 |
112 115
|
eqtrd |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> dom ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) = ( ( 0 ..^ P ) u. ( P ..^ N ) ) ) |
| 117 |
|
fzodisj |
|- ( ( 0 ..^ P ) i^i ( P ..^ N ) ) = (/) |
| 118 |
|
reldisjun |
|- ( ( Rel ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) /\ dom ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) = ( ( 0 ..^ P ) u. ( P ..^ N ) ) /\ ( ( 0 ..^ P ) i^i ( P ..^ N ) ) = (/) ) -> ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) = ( ( ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) |` ( 0 ..^ P ) ) u. ( ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) |` ( P ..^ N ) ) ) ) |
| 119 |
117 118
|
mp3an3 |
|- ( ( Rel ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) /\ dom ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) = ( ( 0 ..^ P ) u. ( P ..^ N ) ) ) -> ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) = ( ( ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) |` ( 0 ..^ P ) ) u. ( ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) |` ( P ..^ N ) ) ) ) |
| 120 |
110 116 119
|
syl2anc |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) = ( ( ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) |` ( 0 ..^ P ) ) u. ( ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) |` ( P ..^ N ) ) ) ) |
| 121 |
|
resco |
|- ( ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) |` ( 0 ..^ P ) ) = ( ( `' ( u u. f ) o. Q ) o. ( ( u u. f ) |` ( 0 ..^ P ) ) ) |
| 122 |
121
|
a1i |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) |` ( 0 ..^ P ) ) = ( ( `' ( u u. f ) o. Q ) o. ( ( u u. f ) |` ( 0 ..^ P ) ) ) ) |
| 123 |
25 26
|
syl |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> u e. Word D ) |
| 124 |
|
wrdfn |
|- ( u e. Word D -> u Fn ( 0 ..^ ( # ` u ) ) ) |
| 125 |
123 124
|
syl |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> u Fn ( 0 ..^ ( # ` u ) ) ) |
| 126 |
24
|
elin2d |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> u e. ( `' # " { P } ) ) |
| 127 |
|
hashf |
|- # : _V --> ( NN0 u. { +oo } ) |
| 128 |
|
ffn |
|- ( # : _V --> ( NN0 u. { +oo } ) -> # Fn _V ) |
| 129 |
|
fniniseg |
|- ( # Fn _V -> ( u e. ( `' # " { P } ) <-> ( u e. _V /\ ( # ` u ) = P ) ) ) |
| 130 |
127 128 129
|
mp2b |
|- ( u e. ( `' # " { P } ) <-> ( u e. _V /\ ( # ` u ) = P ) ) |
| 131 |
130
|
simprbi |
|- ( u e. ( `' # " { P } ) -> ( # ` u ) = P ) |
| 132 |
126 131
|
syl |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( # ` u ) = P ) |
| 133 |
132
|
oveq2d |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( 0 ..^ ( # ` u ) ) = ( 0 ..^ P ) ) |
| 134 |
133
|
fneq2d |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( u Fn ( 0 ..^ ( # ` u ) ) <-> u Fn ( 0 ..^ P ) ) ) |
| 135 |
125 134
|
mpbid |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> u Fn ( 0 ..^ P ) ) |
| 136 |
135
|
adantr |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> u Fn ( 0 ..^ P ) ) |
| 137 |
|
f1ofn |
|- ( f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) -> f Fn ( ( 0 ..^ N ) \ dom u ) ) |
| 138 |
80 137
|
syl |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> f Fn ( ( 0 ..^ N ) \ dom u ) ) |
| 139 |
48 133
|
eqtrd |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> dom u = ( 0 ..^ P ) ) |
| 140 |
139
|
ineq1d |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( dom u i^i ( ( 0 ..^ N ) \ dom u ) ) = ( ( 0 ..^ P ) i^i ( ( 0 ..^ N ) \ dom u ) ) ) |
| 141 |
81
|
a1i |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( dom u i^i ( ( 0 ..^ N ) \ dom u ) ) = (/) ) |
| 142 |
140 141
|
eqtr3d |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( ( 0 ..^ P ) i^i ( ( 0 ..^ N ) \ dom u ) ) = (/) ) |
| 143 |
142
|
adantr |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( 0 ..^ P ) i^i ( ( 0 ..^ N ) \ dom u ) ) = (/) ) |
| 144 |
|
fnunres1 |
|- ( ( u Fn ( 0 ..^ P ) /\ f Fn ( ( 0 ..^ N ) \ dom u ) /\ ( ( 0 ..^ P ) i^i ( ( 0 ..^ N ) \ dom u ) ) = (/) ) -> ( ( u u. f ) |` ( 0 ..^ P ) ) = u ) |
| 145 |
136 138 143 144
|
syl3anc |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( u u. f ) |` ( 0 ..^ P ) ) = u ) |
| 146 |
145
|
coeq2d |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' ( u u. f ) o. Q ) o. ( ( u u. f ) |` ( 0 ..^ P ) ) ) = ( ( `' ( u u. f ) o. Q ) o. u ) ) |
| 147 |
|
resco |
|- ( ( `' ( u u. f ) o. Q ) |` ran u ) = ( `' ( u u. f ) o. ( Q |` ran u ) ) |
| 148 |
|
resco |
|- ( ( `' u o. ( M ` u ) ) |` ran u ) = ( `' u o. ( ( M ` u ) |` ran u ) ) |
| 149 |
148
|
a1i |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' u o. ( M ` u ) ) |` ran u ) = ( `' u o. ( ( M ` u ) |` ran u ) ) ) |
| 150 |
|
cnvun |
|- `' ( u u. f ) = ( `' u u. `' f ) |
| 151 |
150
|
reseq1i |
|- ( `' ( u u. f ) |` ran u ) = ( ( `' u u. `' f ) |` ran u ) |
| 152 |
|
f1ocnv |
|- ( u : dom u -1-1-onto-> ran u -> `' u : ran u -1-1-onto-> dom u ) |
| 153 |
|
f1ofn |
|- ( `' u : ran u -1-1-onto-> dom u -> `' u Fn ran u ) |
| 154 |
77 78 152 153
|
4syl |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> `' u Fn ran u ) |
| 155 |
|
f1ocnv |
|- ( f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) -> `' f : ( D \ ran u ) -1-1-onto-> ( ( 0 ..^ N ) \ dom u ) ) |
| 156 |
|
f1ofn |
|- ( `' f : ( D \ ran u ) -1-1-onto-> ( ( 0 ..^ N ) \ dom u ) -> `' f Fn ( D \ ran u ) ) |
| 157 |
80 155 156
|
3syl |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> `' f Fn ( D \ ran u ) ) |
| 158 |
|
fnunres1 |
|- ( ( `' u Fn ran u /\ `' f Fn ( D \ ran u ) /\ ( ran u i^i ( D \ ran u ) ) = (/) ) -> ( ( `' u u. `' f ) |` ran u ) = `' u ) |
| 159 |
154 157 84 158
|
syl3anc |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' u u. `' f ) |` ran u ) = `' u ) |
| 160 |
151 159
|
eqtr2id |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> `' u = ( `' ( u u. f ) |` ran u ) ) |
| 161 |
|
simplr |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( M ` u ) = Q ) |
| 162 |
161
|
reseq1d |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( M ` u ) |` ran u ) = ( Q |` ran u ) ) |
| 163 |
160 162
|
coeq12d |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( `' u o. ( ( M ` u ) |` ran u ) ) = ( ( `' ( u u. f ) |` ran u ) o. ( Q |` ran u ) ) ) |
| 164 |
55
|
adantr |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> D e. Fin ) |
| 165 |
123
|
adantr |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> u e. Word D ) |
| 166 |
4 164 165 77
|
tocycfvres1 |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( M ` u ) |` ran u ) = ( ( u cyclShift 1 ) o. `' u ) ) |
| 167 |
162 166
|
eqtr3d |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( Q |` ran u ) = ( ( u cyclShift 1 ) o. `' u ) ) |
| 168 |
167
|
rneqd |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ran ( Q |` ran u ) = ran ( ( u cyclShift 1 ) o. `' u ) ) |
| 169 |
|
1zzd |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> 1 e. ZZ ) |
| 170 |
|
cshf1o |
|- ( ( u e. Word D /\ u : dom u -1-1-> D /\ 1 e. ZZ ) -> ( u cyclShift 1 ) : dom u -1-1-onto-> ran u ) |
| 171 |
165 77 169 170
|
syl3anc |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( u cyclShift 1 ) : dom u -1-1-onto-> ran u ) |
| 172 |
79 152
|
syl |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> `' u : ran u -1-1-onto-> dom u ) |
| 173 |
|
f1oco |
|- ( ( ( u cyclShift 1 ) : dom u -1-1-onto-> ran u /\ `' u : ran u -1-1-onto-> dom u ) -> ( ( u cyclShift 1 ) o. `' u ) : ran u -1-1-onto-> ran u ) |
| 174 |
171 172 173
|
syl2anc |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( u cyclShift 1 ) o. `' u ) : ran u -1-1-onto-> ran u ) |
| 175 |
|
f1ofo |
|- ( ( ( u cyclShift 1 ) o. `' u ) : ran u -1-1-onto-> ran u -> ( ( u cyclShift 1 ) o. `' u ) : ran u -onto-> ran u ) |
| 176 |
|
forn |
|- ( ( ( u cyclShift 1 ) o. `' u ) : ran u -onto-> ran u -> ran ( ( u cyclShift 1 ) o. `' u ) = ran u ) |
| 177 |
174 175 176
|
3syl |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ran ( ( u cyclShift 1 ) o. `' u ) = ran u ) |
| 178 |
168 177
|
eqtrd |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ran ( Q |` ran u ) = ran u ) |
| 179 |
|
ssid |
|- ran u C_ ran u |
| 180 |
178 179
|
eqsstrdi |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ran ( Q |` ran u ) C_ ran u ) |
| 181 |
|
cores |
|- ( ran ( Q |` ran u ) C_ ran u -> ( ( `' ( u u. f ) |` ran u ) o. ( Q |` ran u ) ) = ( `' ( u u. f ) o. ( Q |` ran u ) ) ) |
| 182 |
180 181
|
syl |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' ( u u. f ) |` ran u ) o. ( Q |` ran u ) ) = ( `' ( u u. f ) o. ( Q |` ran u ) ) ) |
| 183 |
149 163 182
|
3eqtrrd |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( `' ( u u. f ) o. ( Q |` ran u ) ) = ( ( `' u o. ( M ` u ) ) |` ran u ) ) |
| 184 |
147 183
|
eqtrid |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' ( u u. f ) o. Q ) |` ran u ) = ( ( `' u o. ( M ` u ) ) |` ran u ) ) |
| 185 |
184
|
coeq1d |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( ( `' ( u u. f ) o. Q ) |` ran u ) o. u ) = ( ( ( `' u o. ( M ` u ) ) |` ran u ) o. u ) ) |
| 186 |
|
cores |
|- ( ran u C_ ran u -> ( ( ( `' u o. ( M ` u ) ) |` ran u ) o. u ) = ( ( `' u o. ( M ` u ) ) o. u ) ) |
| 187 |
179 186
|
mp1i |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( ( `' u o. ( M ` u ) ) |` ran u ) o. u ) = ( ( `' u o. ( M ` u ) ) o. u ) ) |
| 188 |
185 187
|
eqtrd |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( ( `' ( u u. f ) o. Q ) |` ran u ) o. u ) = ( ( `' u o. ( M ` u ) ) o. u ) ) |
| 189 |
|
cores |
|- ( ran u C_ ran u -> ( ( ( `' ( u u. f ) o. Q ) |` ran u ) o. u ) = ( ( `' ( u u. f ) o. Q ) o. u ) ) |
| 190 |
179 189
|
mp1i |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( ( `' ( u u. f ) o. Q ) |` ran u ) o. u ) = ( ( `' ( u u. f ) o. Q ) o. u ) ) |
| 191 |
132
|
adantr |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( # ` u ) = P ) |
| 192 |
1 2 3 4 164 165 77 191
|
cycpmconjslem1 |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' u o. ( M ` u ) ) o. u ) = ( ( _I |` ( 0 ..^ P ) ) cyclShift 1 ) ) |
| 193 |
188 190 192
|
3eqtr3d |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' ( u u. f ) o. Q ) o. u ) = ( ( _I |` ( 0 ..^ P ) ) cyclShift 1 ) ) |
| 194 |
122 146 193
|
3eqtrd |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) |` ( 0 ..^ P ) ) = ( ( _I |` ( 0 ..^ P ) ) cyclShift 1 ) ) |
| 195 |
|
resco |
|- ( ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) |` ( P ..^ N ) ) = ( ( `' ( u u. f ) o. Q ) o. ( ( u u. f ) |` ( P ..^ N ) ) ) |
| 196 |
139
|
adantr |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> dom u = ( 0 ..^ P ) ) |
| 197 |
196
|
difeq2d |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( 0 ..^ N ) \ dom u ) = ( ( 0 ..^ N ) \ ( 0 ..^ P ) ) ) |
| 198 |
|
fzodif1 |
|- ( P e. ( 0 ... N ) -> ( ( 0 ..^ N ) \ ( 0 ..^ P ) ) = ( P ..^ N ) ) |
| 199 |
8 198
|
syl |
|- ( ph -> ( ( 0 ..^ N ) \ ( 0 ..^ P ) ) = ( P ..^ N ) ) |
| 200 |
199
|
ad3antrrr |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( 0 ..^ N ) \ ( 0 ..^ P ) ) = ( P ..^ N ) ) |
| 201 |
197 200
|
eqtrd |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( 0 ..^ N ) \ dom u ) = ( P ..^ N ) ) |
| 202 |
201
|
reseq2d |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( u u. f ) |` ( ( 0 ..^ N ) \ dom u ) ) = ( ( u u. f ) |` ( P ..^ N ) ) ) |
| 203 |
|
fnunres2 |
|- ( ( u Fn ( 0 ..^ P ) /\ f Fn ( ( 0 ..^ N ) \ dom u ) /\ ( ( 0 ..^ P ) i^i ( ( 0 ..^ N ) \ dom u ) ) = (/) ) -> ( ( u u. f ) |` ( ( 0 ..^ N ) \ dom u ) ) = f ) |
| 204 |
136 138 143 203
|
syl3anc |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( u u. f ) |` ( ( 0 ..^ N ) \ dom u ) ) = f ) |
| 205 |
202 204
|
eqtr3d |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( u u. f ) |` ( P ..^ N ) ) = f ) |
| 206 |
205
|
coeq2d |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' ( u u. f ) o. Q ) o. ( ( u u. f ) |` ( P ..^ N ) ) ) = ( ( `' ( u u. f ) o. Q ) o. f ) ) |
| 207 |
195 206
|
eqtrid |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) |` ( P ..^ N ) ) = ( ( `' ( u u. f ) o. Q ) o. f ) ) |
| 208 |
150
|
reseq1i |
|- ( `' ( u u. f ) |` ( D \ ran u ) ) = ( ( `' u u. `' f ) |` ( D \ ran u ) ) |
| 209 |
|
fnunres2 |
|- ( ( `' u Fn ran u /\ `' f Fn ( D \ ran u ) /\ ( ran u i^i ( D \ ran u ) ) = (/) ) -> ( ( `' u u. `' f ) |` ( D \ ran u ) ) = `' f ) |
| 210 |
154 157 84 209
|
syl3anc |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' u u. `' f ) |` ( D \ ran u ) ) = `' f ) |
| 211 |
208 210
|
eqtrid |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( `' ( u u. f ) |` ( D \ ran u ) ) = `' f ) |
| 212 |
161
|
reseq1d |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( M ` u ) |` ( D \ ran u ) ) = ( Q |` ( D \ ran u ) ) ) |
| 213 |
4 164 165 77
|
tocycfvres2 |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( M ` u ) |` ( D \ ran u ) ) = ( _I |` ( D \ ran u ) ) ) |
| 214 |
212 213
|
eqtr3d |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( Q |` ( D \ ran u ) ) = ( _I |` ( D \ ran u ) ) ) |
| 215 |
211 214
|
coeq12d |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' ( u u. f ) |` ( D \ ran u ) ) o. ( Q |` ( D \ ran u ) ) ) = ( `' f o. ( _I |` ( D \ ran u ) ) ) ) |
| 216 |
214
|
rneqd |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ran ( Q |` ( D \ ran u ) ) = ran ( _I |` ( D \ ran u ) ) ) |
| 217 |
|
rnresi |
|- ran ( _I |` ( D \ ran u ) ) = ( D \ ran u ) |
| 218 |
217
|
eqimssi |
|- ran ( _I |` ( D \ ran u ) ) C_ ( D \ ran u ) |
| 219 |
216 218
|
eqsstrdi |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ran ( Q |` ( D \ ran u ) ) C_ ( D \ ran u ) ) |
| 220 |
|
cores |
|- ( ran ( Q |` ( D \ ran u ) ) C_ ( D \ ran u ) -> ( ( `' ( u u. f ) |` ( D \ ran u ) ) o. ( Q |` ( D \ ran u ) ) ) = ( `' ( u u. f ) o. ( Q |` ( D \ ran u ) ) ) ) |
| 221 |
219 220
|
syl |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' ( u u. f ) |` ( D \ ran u ) ) o. ( Q |` ( D \ ran u ) ) ) = ( `' ( u u. f ) o. ( Q |` ( D \ ran u ) ) ) ) |
| 222 |
|
resco |
|- ( ( `' ( u u. f ) o. Q ) |` ( D \ ran u ) ) = ( `' ( u u. f ) o. ( Q |` ( D \ ran u ) ) ) |
| 223 |
221 222
|
eqtr4di |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' ( u u. f ) |` ( D \ ran u ) ) o. ( Q |` ( D \ ran u ) ) ) = ( ( `' ( u u. f ) o. Q ) |` ( D \ ran u ) ) ) |
| 224 |
215 223
|
eqtr3d |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( `' f o. ( _I |` ( D \ ran u ) ) ) = ( ( `' ( u u. f ) o. Q ) |` ( D \ ran u ) ) ) |
| 225 |
224
|
coeq1d |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' f o. ( _I |` ( D \ ran u ) ) ) o. f ) = ( ( ( `' ( u u. f ) o. Q ) |` ( D \ ran u ) ) o. f ) ) |
| 226 |
|
f1of |
|- ( `' f : ( D \ ran u ) -1-1-onto-> ( ( 0 ..^ N ) \ dom u ) -> `' f : ( D \ ran u ) --> ( ( 0 ..^ N ) \ dom u ) ) |
| 227 |
|
fcoi1 |
|- ( `' f : ( D \ ran u ) --> ( ( 0 ..^ N ) \ dom u ) -> ( `' f o. ( _I |` ( D \ ran u ) ) ) = `' f ) |
| 228 |
80 155 226 227
|
4syl |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( `' f o. ( _I |` ( D \ ran u ) ) ) = `' f ) |
| 229 |
228
|
coeq1d |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' f o. ( _I |` ( D \ ran u ) ) ) o. f ) = ( `' f o. f ) ) |
| 230 |
|
f1ococnv1 |
|- ( f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) -> ( `' f o. f ) = ( _I |` ( ( 0 ..^ N ) \ dom u ) ) ) |
| 231 |
80 230
|
syl |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( `' f o. f ) = ( _I |` ( ( 0 ..^ N ) \ dom u ) ) ) |
| 232 |
201
|
reseq2d |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( _I |` ( ( 0 ..^ N ) \ dom u ) ) = ( _I |` ( P ..^ N ) ) ) |
| 233 |
229 231 232
|
3eqtrd |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' f o. ( _I |` ( D \ ran u ) ) ) o. f ) = ( _I |` ( P ..^ N ) ) ) |
| 234 |
|
f1of |
|- ( f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) -> f : ( ( 0 ..^ N ) \ dom u ) --> ( D \ ran u ) ) |
| 235 |
|
frn |
|- ( f : ( ( 0 ..^ N ) \ dom u ) --> ( D \ ran u ) -> ran f C_ ( D \ ran u ) ) |
| 236 |
|
cores |
|- ( ran f C_ ( D \ ran u ) -> ( ( ( `' ( u u. f ) o. Q ) |` ( D \ ran u ) ) o. f ) = ( ( `' ( u u. f ) o. Q ) o. f ) ) |
| 237 |
80 234 235 236
|
4syl |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( ( `' ( u u. f ) o. Q ) |` ( D \ ran u ) ) o. f ) = ( ( `' ( u u. f ) o. Q ) o. f ) ) |
| 238 |
225 233 237
|
3eqtr3rd |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' ( u u. f ) o. Q ) o. f ) = ( _I |` ( P ..^ N ) ) ) |
| 239 |
207 238
|
eqtrd |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) |` ( P ..^ N ) ) = ( _I |` ( P ..^ N ) ) ) |
| 240 |
194 239
|
uneq12d |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) |` ( 0 ..^ P ) ) u. ( ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) |` ( P ..^ N ) ) ) = ( ( ( _I |` ( 0 ..^ P ) ) cyclShift 1 ) u. ( _I |` ( P ..^ N ) ) ) ) |
| 241 |
120 240
|
eqtrd |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) = ( ( ( _I |` ( 0 ..^ P ) ) cyclShift 1 ) u. ( _I |` ( P ..^ N ) ) ) ) |
| 242 |
|
vex |
|- u e. _V |
| 243 |
|
vex |
|- f e. _V |
| 244 |
242 243
|
unex |
|- ( u u. f ) e. _V |
| 245 |
|
f1oeq1 |
|- ( q = ( u u. f ) -> ( q : ( 0 ..^ N ) -1-1-onto-> D <-> ( u u. f ) : ( 0 ..^ N ) -1-1-onto-> D ) ) |
| 246 |
|
cnveq |
|- ( q = ( u u. f ) -> `' q = `' ( u u. f ) ) |
| 247 |
246
|
coeq1d |
|- ( q = ( u u. f ) -> ( `' q o. Q ) = ( `' ( u u. f ) o. Q ) ) |
| 248 |
|
id |
|- ( q = ( u u. f ) -> q = ( u u. f ) ) |
| 249 |
247 248
|
coeq12d |
|- ( q = ( u u. f ) -> ( ( `' q o. Q ) o. q ) = ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) ) |
| 250 |
249
|
eqeq1d |
|- ( q = ( u u. f ) -> ( ( ( `' q o. Q ) o. q ) = ( ( ( _I |` ( 0 ..^ P ) ) cyclShift 1 ) u. ( _I |` ( P ..^ N ) ) ) <-> ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) = ( ( ( _I |` ( 0 ..^ P ) ) cyclShift 1 ) u. ( _I |` ( P ..^ N ) ) ) ) ) |
| 251 |
245 250
|
anbi12d |
|- ( q = ( u u. f ) -> ( ( q : ( 0 ..^ N ) -1-1-onto-> D /\ ( ( `' q o. Q ) o. q ) = ( ( ( _I |` ( 0 ..^ P ) ) cyclShift 1 ) u. ( _I |` ( P ..^ N ) ) ) ) <-> ( ( u u. f ) : ( 0 ..^ N ) -1-1-onto-> D /\ ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) = ( ( ( _I |` ( 0 ..^ P ) ) cyclShift 1 ) u. ( _I |` ( P ..^ N ) ) ) ) ) ) |
| 252 |
244 251
|
spcev |
|- ( ( ( u u. f ) : ( 0 ..^ N ) -1-1-onto-> D /\ ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) = ( ( ( _I |` ( 0 ..^ P ) ) cyclShift 1 ) u. ( _I |` ( P ..^ N ) ) ) ) -> E. q ( q : ( 0 ..^ N ) -1-1-onto-> D /\ ( ( `' q o. Q ) o. q ) = ( ( ( _I |` ( 0 ..^ P ) ) cyclShift 1 ) u. ( _I |` ( P ..^ N ) ) ) ) ) |
| 253 |
95 241 252
|
syl2anc |
|- ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> E. q ( q : ( 0 ..^ N ) -1-1-onto-> D /\ ( ( `' q o. Q ) o. q ) = ( ( ( _I |` ( 0 ..^ P ) ) cyclShift 1 ) u. ( _I |` ( P ..^ N ) ) ) ) ) |
| 254 |
76 253
|
exlimddv |
|- ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> E. q ( q : ( 0 ..^ N ) -1-1-onto-> D /\ ( ( `' q o. Q ) o. q ) = ( ( ( _I |` ( 0 ..^ P ) ) cyclShift 1 ) u. ( _I |` ( P ..^ N ) ) ) ) ) |
| 255 |
|
nfcv |
|- F/_ u M |
| 256 |
4 2 5
|
tocycf |
|- ( D e. Fin -> M : { w e. Word D | w : dom w -1-1-> D } --> B ) |
| 257 |
|
ffn |
|- ( M : { w e. Word D | w : dom w -1-1-> D } --> B -> M Fn { w e. Word D | w : dom w -1-1-> D } ) |
| 258 |
9 256 257
|
3syl |
|- ( ph -> M Fn { w e. Word D | w : dom w -1-1-> D } ) |
| 259 |
10 1
|
eleqtrdi |
|- ( ph -> Q e. ( M " ( `' # " { P } ) ) ) |
| 260 |
255 258 259
|
fvelimad |
|- ( ph -> E. u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ( M ` u ) = Q ) |
| 261 |
254 260
|
r19.29a |
|- ( ph -> E. q ( q : ( 0 ..^ N ) -1-1-onto-> D /\ ( ( `' q o. Q ) o. q ) = ( ( ( _I |` ( 0 ..^ P ) ) cyclShift 1 ) u. ( _I |` ( P ..^ N ) ) ) ) ) |