| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycpmconjs.c |  |-  C = ( M " ( `' # " { P } ) ) | 
						
							| 2 |  | cycpmconjs.s |  |-  S = ( SymGrp ` D ) | 
						
							| 3 |  | cycpmconjs.n |  |-  N = ( # ` D ) | 
						
							| 4 |  | cycpmconjs.m |  |-  M = ( toCyc ` D ) | 
						
							| 5 |  | cycpmconjs.b |  |-  B = ( Base ` S ) | 
						
							| 6 |  | cycpmconjs.a |  |-  .+ = ( +g ` S ) | 
						
							| 7 |  | cycpmconjs.l |  |-  .- = ( -g ` S ) | 
						
							| 8 |  | cycpmconjs.p |  |-  ( ph -> P e. ( 0 ... N ) ) | 
						
							| 9 |  | cycpmconjs.d |  |-  ( ph -> D e. Fin ) | 
						
							| 10 |  | cycpmconjs.q |  |-  ( ph -> Q e. C ) | 
						
							| 11 |  | fzofi |  |-  ( 0 ..^ N ) e. Fin | 
						
							| 12 |  | diffi |  |-  ( ( 0 ..^ N ) e. Fin -> ( ( 0 ..^ N ) \ dom u ) e. Fin ) | 
						
							| 13 | 11 12 | mp1i |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( ( 0 ..^ N ) \ dom u ) e. Fin ) | 
						
							| 14 |  | diffi |  |-  ( D e. Fin -> ( D \ ran u ) e. Fin ) | 
						
							| 15 | 9 14 | syl |  |-  ( ph -> ( D \ ran u ) e. Fin ) | 
						
							| 16 | 15 | ad2antrr |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( D \ ran u ) e. Fin ) | 
						
							| 17 |  | hashcl |  |-  ( D e. Fin -> ( # ` D ) e. NN0 ) | 
						
							| 18 | 9 17 | syl |  |-  ( ph -> ( # ` D ) e. NN0 ) | 
						
							| 19 | 3 18 | eqeltrid |  |-  ( ph -> N e. NN0 ) | 
						
							| 20 |  | hashfzo0 |  |-  ( N e. NN0 -> ( # ` ( 0 ..^ N ) ) = N ) | 
						
							| 21 | 19 20 | syl |  |-  ( ph -> ( # ` ( 0 ..^ N ) ) = N ) | 
						
							| 22 | 21 3 | eqtrdi |  |-  ( ph -> ( # ` ( 0 ..^ N ) ) = ( # ` D ) ) | 
						
							| 23 | 22 | ad2antrr |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( # ` ( 0 ..^ N ) ) = ( # ` D ) ) | 
						
							| 24 |  | simplr |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) | 
						
							| 25 | 24 | elin1d |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> u e. { w e. Word D | w : dom w -1-1-> D } ) | 
						
							| 26 |  | elrabi |  |-  ( u e. { w e. Word D | w : dom w -1-1-> D } -> u e. Word D ) | 
						
							| 27 |  | wrdfin |  |-  ( u e. Word D -> u e. Fin ) | 
						
							| 28 | 25 26 27 | 3syl |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> u e. Fin ) | 
						
							| 29 |  | id |  |-  ( w = u -> w = u ) | 
						
							| 30 |  | dmeq |  |-  ( w = u -> dom w = dom u ) | 
						
							| 31 |  | eqidd |  |-  ( w = u -> D = D ) | 
						
							| 32 | 29 30 31 | f1eq123d |  |-  ( w = u -> ( w : dom w -1-1-> D <-> u : dom u -1-1-> D ) ) | 
						
							| 33 | 32 | elrab |  |-  ( u e. { w e. Word D | w : dom w -1-1-> D } <-> ( u e. Word D /\ u : dom u -1-1-> D ) ) | 
						
							| 34 | 33 | simprbi |  |-  ( u e. { w e. Word D | w : dom w -1-1-> D } -> u : dom u -1-1-> D ) | 
						
							| 35 | 25 34 | syl |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> u : dom u -1-1-> D ) | 
						
							| 36 |  | f1fun |  |-  ( u : dom u -1-1-> D -> Fun u ) | 
						
							| 37 | 35 36 | syl |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> Fun u ) | 
						
							| 38 |  | hashfun |  |-  ( u e. Fin -> ( Fun u <-> ( # ` u ) = ( # ` dom u ) ) ) | 
						
							| 39 | 38 | biimpa |  |-  ( ( u e. Fin /\ Fun u ) -> ( # ` u ) = ( # ` dom u ) ) | 
						
							| 40 | 28 37 39 | syl2anc |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( # ` u ) = ( # ` dom u ) ) | 
						
							| 41 | 24 | dmexd |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> dom u e. _V ) | 
						
							| 42 |  | hashf1rn |  |-  ( ( dom u e. _V /\ u : dom u -1-1-> D ) -> ( # ` u ) = ( # ` ran u ) ) | 
						
							| 43 | 41 35 42 | syl2anc |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( # ` u ) = ( # ` ran u ) ) | 
						
							| 44 | 40 43 | eqtr3d |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( # ` dom u ) = ( # ` ran u ) ) | 
						
							| 45 | 23 44 | oveq12d |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( ( # ` ( 0 ..^ N ) ) - ( # ` dom u ) ) = ( ( # ` D ) - ( # ` ran u ) ) ) | 
						
							| 46 | 11 | a1i |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( 0 ..^ N ) e. Fin ) | 
						
							| 47 |  | wrddm |  |-  ( u e. Word D -> dom u = ( 0 ..^ ( # ` u ) ) ) | 
						
							| 48 | 25 26 47 | 3syl |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> dom u = ( 0 ..^ ( # ` u ) ) ) | 
						
							| 49 |  | hashcl |  |-  ( u e. Fin -> ( # ` u ) e. NN0 ) | 
						
							| 50 | 25 26 27 49 | 4syl |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( # ` u ) e. NN0 ) | 
						
							| 51 | 50 | nn0zd |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( # ` u ) e. ZZ ) | 
						
							| 52 | 18 | nn0zd |  |-  ( ph -> ( # ` D ) e. ZZ ) | 
						
							| 53 | 3 52 | eqeltrid |  |-  ( ph -> N e. ZZ ) | 
						
							| 54 | 53 | ad2antrr |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> N e. ZZ ) | 
						
							| 55 | 9 | ad2antrr |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> D e. Fin ) | 
						
							| 56 |  | wrdf |  |-  ( u e. Word D -> u : ( 0 ..^ ( # ` u ) ) --> D ) | 
						
							| 57 | 56 | frnd |  |-  ( u e. Word D -> ran u C_ D ) | 
						
							| 58 | 25 26 57 | 3syl |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ran u C_ D ) | 
						
							| 59 |  | hashss |  |-  ( ( D e. Fin /\ ran u C_ D ) -> ( # ` ran u ) <_ ( # ` D ) ) | 
						
							| 60 | 55 58 59 | syl2anc |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( # ` ran u ) <_ ( # ` D ) ) | 
						
							| 61 | 3 | a1i |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> N = ( # ` D ) ) | 
						
							| 62 | 60 43 61 | 3brtr4d |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( # ` u ) <_ N ) | 
						
							| 63 |  | eluz1 |  |-  ( ( # ` u ) e. ZZ -> ( N e. ( ZZ>= ` ( # ` u ) ) <-> ( N e. ZZ /\ ( # ` u ) <_ N ) ) ) | 
						
							| 64 | 63 | biimpar |  |-  ( ( ( # ` u ) e. ZZ /\ ( N e. ZZ /\ ( # ` u ) <_ N ) ) -> N e. ( ZZ>= ` ( # ` u ) ) ) | 
						
							| 65 | 51 54 62 64 | syl12anc |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> N e. ( ZZ>= ` ( # ` u ) ) ) | 
						
							| 66 |  | fzoss2 |  |-  ( N e. ( ZZ>= ` ( # ` u ) ) -> ( 0 ..^ ( # ` u ) ) C_ ( 0 ..^ N ) ) | 
						
							| 67 | 65 66 | syl |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( 0 ..^ ( # ` u ) ) C_ ( 0 ..^ N ) ) | 
						
							| 68 | 48 67 | eqsstrd |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> dom u C_ ( 0 ..^ N ) ) | 
						
							| 69 |  | hashssdif |  |-  ( ( ( 0 ..^ N ) e. Fin /\ dom u C_ ( 0 ..^ N ) ) -> ( # ` ( ( 0 ..^ N ) \ dom u ) ) = ( ( # ` ( 0 ..^ N ) ) - ( # ` dom u ) ) ) | 
						
							| 70 | 46 68 69 | syl2anc |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( # ` ( ( 0 ..^ N ) \ dom u ) ) = ( ( # ` ( 0 ..^ N ) ) - ( # ` dom u ) ) ) | 
						
							| 71 |  | hashssdif |  |-  ( ( D e. Fin /\ ran u C_ D ) -> ( # ` ( D \ ran u ) ) = ( ( # ` D ) - ( # ` ran u ) ) ) | 
						
							| 72 | 55 58 71 | syl2anc |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( # ` ( D \ ran u ) ) = ( ( # ` D ) - ( # ` ran u ) ) ) | 
						
							| 73 | 45 70 72 | 3eqtr4d |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( # ` ( ( 0 ..^ N ) \ dom u ) ) = ( # ` ( D \ ran u ) ) ) | 
						
							| 74 |  | hasheqf1o |  |-  ( ( ( ( 0 ..^ N ) \ dom u ) e. Fin /\ ( D \ ran u ) e. Fin ) -> ( ( # ` ( ( 0 ..^ N ) \ dom u ) ) = ( # ` ( D \ ran u ) ) <-> E. f f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) ) | 
						
							| 75 | 74 | biimpa |  |-  ( ( ( ( ( 0 ..^ N ) \ dom u ) e. Fin /\ ( D \ ran u ) e. Fin ) /\ ( # ` ( ( 0 ..^ N ) \ dom u ) ) = ( # ` ( D \ ran u ) ) ) -> E. f f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) | 
						
							| 76 | 13 16 73 75 | syl21anc |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> E. f f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) | 
						
							| 77 | 35 | adantr |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> u : dom u -1-1-> D ) | 
						
							| 78 |  | f1f1orn |  |-  ( u : dom u -1-1-> D -> u : dom u -1-1-onto-> ran u ) | 
						
							| 79 | 77 78 | syl |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> u : dom u -1-1-onto-> ran u ) | 
						
							| 80 |  | simpr |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) | 
						
							| 81 |  | disjdif |  |-  ( dom u i^i ( ( 0 ..^ N ) \ dom u ) ) = (/) | 
						
							| 82 | 81 | a1i |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( dom u i^i ( ( 0 ..^ N ) \ dom u ) ) = (/) ) | 
						
							| 83 |  | disjdif |  |-  ( ran u i^i ( D \ ran u ) ) = (/) | 
						
							| 84 | 83 | a1i |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ran u i^i ( D \ ran u ) ) = (/) ) | 
						
							| 85 |  | f1oun |  |-  ( ( ( u : dom u -1-1-onto-> ran u /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) /\ ( ( dom u i^i ( ( 0 ..^ N ) \ dom u ) ) = (/) /\ ( ran u i^i ( D \ ran u ) ) = (/) ) ) -> ( u u. f ) : ( dom u u. ( ( 0 ..^ N ) \ dom u ) ) -1-1-onto-> ( ran u u. ( D \ ran u ) ) ) | 
						
							| 86 | 79 80 82 84 85 | syl22anc |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( u u. f ) : ( dom u u. ( ( 0 ..^ N ) \ dom u ) ) -1-1-onto-> ( ran u u. ( D \ ran u ) ) ) | 
						
							| 87 |  | eqidd |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( u u. f ) = ( u u. f ) ) | 
						
							| 88 | 68 | adantr |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> dom u C_ ( 0 ..^ N ) ) | 
						
							| 89 |  | undif |  |-  ( dom u C_ ( 0 ..^ N ) <-> ( dom u u. ( ( 0 ..^ N ) \ dom u ) ) = ( 0 ..^ N ) ) | 
						
							| 90 | 88 89 | sylib |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( dom u u. ( ( 0 ..^ N ) \ dom u ) ) = ( 0 ..^ N ) ) | 
						
							| 91 |  | undif |  |-  ( ran u C_ D <-> ( ran u u. ( D \ ran u ) ) = D ) | 
						
							| 92 | 58 91 | sylib |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( ran u u. ( D \ ran u ) ) = D ) | 
						
							| 93 | 92 | adantr |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ran u u. ( D \ ran u ) ) = D ) | 
						
							| 94 | 87 90 93 | f1oeq123d |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( u u. f ) : ( dom u u. ( ( 0 ..^ N ) \ dom u ) ) -1-1-onto-> ( ran u u. ( D \ ran u ) ) <-> ( u u. f ) : ( 0 ..^ N ) -1-1-onto-> D ) ) | 
						
							| 95 | 86 94 | mpbid |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( u u. f ) : ( 0 ..^ N ) -1-1-onto-> D ) | 
						
							| 96 |  | f1ocnv |  |-  ( ( u u. f ) : ( 0 ..^ N ) -1-1-onto-> D -> `' ( u u. f ) : D -1-1-onto-> ( 0 ..^ N ) ) | 
						
							| 97 | 95 96 | syl |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> `' ( u u. f ) : D -1-1-onto-> ( 0 ..^ N ) ) | 
						
							| 98 | 1 2 3 4 5 | cycpmgcl |  |-  ( ( D e. Fin /\ P e. ( 0 ... N ) ) -> C C_ B ) | 
						
							| 99 | 9 8 98 | syl2anc |  |-  ( ph -> C C_ B ) | 
						
							| 100 | 99 10 | sseldd |  |-  ( ph -> Q e. B ) | 
						
							| 101 | 2 5 | symgbasf1o |  |-  ( Q e. B -> Q : D -1-1-onto-> D ) | 
						
							| 102 | 100 101 | syl |  |-  ( ph -> Q : D -1-1-onto-> D ) | 
						
							| 103 | 102 | ad3antrrr |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> Q : D -1-1-onto-> D ) | 
						
							| 104 |  | f1oco |  |-  ( ( `' ( u u. f ) : D -1-1-onto-> ( 0 ..^ N ) /\ Q : D -1-1-onto-> D ) -> ( `' ( u u. f ) o. Q ) : D -1-1-onto-> ( 0 ..^ N ) ) | 
						
							| 105 | 97 103 104 | syl2anc |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( `' ( u u. f ) o. Q ) : D -1-1-onto-> ( 0 ..^ N ) ) | 
						
							| 106 |  | f1oco |  |-  ( ( ( `' ( u u. f ) o. Q ) : D -1-1-onto-> ( 0 ..^ N ) /\ ( u u. f ) : ( 0 ..^ N ) -1-1-onto-> D ) -> ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) : ( 0 ..^ N ) -1-1-onto-> ( 0 ..^ N ) ) | 
						
							| 107 | 105 95 106 | syl2anc |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) : ( 0 ..^ N ) -1-1-onto-> ( 0 ..^ N ) ) | 
						
							| 108 |  | f1ofun |  |-  ( ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) : ( 0 ..^ N ) -1-1-onto-> ( 0 ..^ N ) -> Fun ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) ) | 
						
							| 109 |  | funrel |  |-  ( Fun ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) -> Rel ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) ) | 
						
							| 110 | 107 108 109 | 3syl |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> Rel ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) ) | 
						
							| 111 |  | f1odm |  |-  ( ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) : ( 0 ..^ N ) -1-1-onto-> ( 0 ..^ N ) -> dom ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) = ( 0 ..^ N ) ) | 
						
							| 112 | 107 111 | syl |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> dom ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) = ( 0 ..^ N ) ) | 
						
							| 113 |  | fzosplit |  |-  ( P e. ( 0 ... N ) -> ( 0 ..^ N ) = ( ( 0 ..^ P ) u. ( P ..^ N ) ) ) | 
						
							| 114 | 8 113 | syl |  |-  ( ph -> ( 0 ..^ N ) = ( ( 0 ..^ P ) u. ( P ..^ N ) ) ) | 
						
							| 115 | 114 | ad3antrrr |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( 0 ..^ N ) = ( ( 0 ..^ P ) u. ( P ..^ N ) ) ) | 
						
							| 116 | 112 115 | eqtrd |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> dom ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) = ( ( 0 ..^ P ) u. ( P ..^ N ) ) ) | 
						
							| 117 |  | fzodisj |  |-  ( ( 0 ..^ P ) i^i ( P ..^ N ) ) = (/) | 
						
							| 118 |  | reldisjun |  |-  ( ( Rel ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) /\ dom ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) = ( ( 0 ..^ P ) u. ( P ..^ N ) ) /\ ( ( 0 ..^ P ) i^i ( P ..^ N ) ) = (/) ) -> ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) = ( ( ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) |` ( 0 ..^ P ) ) u. ( ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) |` ( P ..^ N ) ) ) ) | 
						
							| 119 | 117 118 | mp3an3 |  |-  ( ( Rel ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) /\ dom ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) = ( ( 0 ..^ P ) u. ( P ..^ N ) ) ) -> ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) = ( ( ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) |` ( 0 ..^ P ) ) u. ( ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) |` ( P ..^ N ) ) ) ) | 
						
							| 120 | 110 116 119 | syl2anc |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) = ( ( ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) |` ( 0 ..^ P ) ) u. ( ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) |` ( P ..^ N ) ) ) ) | 
						
							| 121 |  | resco |  |-  ( ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) |` ( 0 ..^ P ) ) = ( ( `' ( u u. f ) o. Q ) o. ( ( u u. f ) |` ( 0 ..^ P ) ) ) | 
						
							| 122 | 121 | a1i |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) |` ( 0 ..^ P ) ) = ( ( `' ( u u. f ) o. Q ) o. ( ( u u. f ) |` ( 0 ..^ P ) ) ) ) | 
						
							| 123 | 25 26 | syl |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> u e. Word D ) | 
						
							| 124 |  | wrdfn |  |-  ( u e. Word D -> u Fn ( 0 ..^ ( # ` u ) ) ) | 
						
							| 125 | 123 124 | syl |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> u Fn ( 0 ..^ ( # ` u ) ) ) | 
						
							| 126 | 24 | elin2d |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> u e. ( `' # " { P } ) ) | 
						
							| 127 |  | hashf |  |-  # : _V --> ( NN0 u. { +oo } ) | 
						
							| 128 |  | ffn |  |-  ( # : _V --> ( NN0 u. { +oo } ) -> # Fn _V ) | 
						
							| 129 |  | fniniseg |  |-  ( # Fn _V -> ( u e. ( `' # " { P } ) <-> ( u e. _V /\ ( # ` u ) = P ) ) ) | 
						
							| 130 | 127 128 129 | mp2b |  |-  ( u e. ( `' # " { P } ) <-> ( u e. _V /\ ( # ` u ) = P ) ) | 
						
							| 131 | 130 | simprbi |  |-  ( u e. ( `' # " { P } ) -> ( # ` u ) = P ) | 
						
							| 132 | 126 131 | syl |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( # ` u ) = P ) | 
						
							| 133 | 132 | oveq2d |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( 0 ..^ ( # ` u ) ) = ( 0 ..^ P ) ) | 
						
							| 134 | 133 | fneq2d |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( u Fn ( 0 ..^ ( # ` u ) ) <-> u Fn ( 0 ..^ P ) ) ) | 
						
							| 135 | 125 134 | mpbid |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> u Fn ( 0 ..^ P ) ) | 
						
							| 136 | 135 | adantr |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> u Fn ( 0 ..^ P ) ) | 
						
							| 137 |  | f1ofn |  |-  ( f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) -> f Fn ( ( 0 ..^ N ) \ dom u ) ) | 
						
							| 138 | 80 137 | syl |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> f Fn ( ( 0 ..^ N ) \ dom u ) ) | 
						
							| 139 | 48 133 | eqtrd |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> dom u = ( 0 ..^ P ) ) | 
						
							| 140 | 139 | ineq1d |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( dom u i^i ( ( 0 ..^ N ) \ dom u ) ) = ( ( 0 ..^ P ) i^i ( ( 0 ..^ N ) \ dom u ) ) ) | 
						
							| 141 | 81 | a1i |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( dom u i^i ( ( 0 ..^ N ) \ dom u ) ) = (/) ) | 
						
							| 142 | 140 141 | eqtr3d |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> ( ( 0 ..^ P ) i^i ( ( 0 ..^ N ) \ dom u ) ) = (/) ) | 
						
							| 143 | 142 | adantr |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( 0 ..^ P ) i^i ( ( 0 ..^ N ) \ dom u ) ) = (/) ) | 
						
							| 144 |  | fnunres1 |  |-  ( ( u Fn ( 0 ..^ P ) /\ f Fn ( ( 0 ..^ N ) \ dom u ) /\ ( ( 0 ..^ P ) i^i ( ( 0 ..^ N ) \ dom u ) ) = (/) ) -> ( ( u u. f ) |` ( 0 ..^ P ) ) = u ) | 
						
							| 145 | 136 138 143 144 | syl3anc |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( u u. f ) |` ( 0 ..^ P ) ) = u ) | 
						
							| 146 | 145 | coeq2d |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' ( u u. f ) o. Q ) o. ( ( u u. f ) |` ( 0 ..^ P ) ) ) = ( ( `' ( u u. f ) o. Q ) o. u ) ) | 
						
							| 147 |  | resco |  |-  ( ( `' ( u u. f ) o. Q ) |` ran u ) = ( `' ( u u. f ) o. ( Q |` ran u ) ) | 
						
							| 148 |  | resco |  |-  ( ( `' u o. ( M ` u ) ) |` ran u ) = ( `' u o. ( ( M ` u ) |` ran u ) ) | 
						
							| 149 | 148 | a1i |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' u o. ( M ` u ) ) |` ran u ) = ( `' u o. ( ( M ` u ) |` ran u ) ) ) | 
						
							| 150 |  | cnvun |  |-  `' ( u u. f ) = ( `' u u. `' f ) | 
						
							| 151 | 150 | reseq1i |  |-  ( `' ( u u. f ) |` ran u ) = ( ( `' u u. `' f ) |` ran u ) | 
						
							| 152 |  | f1ocnv |  |-  ( u : dom u -1-1-onto-> ran u -> `' u : ran u -1-1-onto-> dom u ) | 
						
							| 153 |  | f1ofn |  |-  ( `' u : ran u -1-1-onto-> dom u -> `' u Fn ran u ) | 
						
							| 154 | 77 78 152 153 | 4syl |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> `' u Fn ran u ) | 
						
							| 155 |  | f1ocnv |  |-  ( f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) -> `' f : ( D \ ran u ) -1-1-onto-> ( ( 0 ..^ N ) \ dom u ) ) | 
						
							| 156 |  | f1ofn |  |-  ( `' f : ( D \ ran u ) -1-1-onto-> ( ( 0 ..^ N ) \ dom u ) -> `' f Fn ( D \ ran u ) ) | 
						
							| 157 | 80 155 156 | 3syl |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> `' f Fn ( D \ ran u ) ) | 
						
							| 158 |  | fnunres1 |  |-  ( ( `' u Fn ran u /\ `' f Fn ( D \ ran u ) /\ ( ran u i^i ( D \ ran u ) ) = (/) ) -> ( ( `' u u. `' f ) |` ran u ) = `' u ) | 
						
							| 159 | 154 157 84 158 | syl3anc |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' u u. `' f ) |` ran u ) = `' u ) | 
						
							| 160 | 151 159 | eqtr2id |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> `' u = ( `' ( u u. f ) |` ran u ) ) | 
						
							| 161 |  | simplr |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( M ` u ) = Q ) | 
						
							| 162 | 161 | reseq1d |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( M ` u ) |` ran u ) = ( Q |` ran u ) ) | 
						
							| 163 | 160 162 | coeq12d |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( `' u o. ( ( M ` u ) |` ran u ) ) = ( ( `' ( u u. f ) |` ran u ) o. ( Q |` ran u ) ) ) | 
						
							| 164 | 55 | adantr |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> D e. Fin ) | 
						
							| 165 | 123 | adantr |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> u e. Word D ) | 
						
							| 166 | 4 164 165 77 | tocycfvres1 |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( M ` u ) |` ran u ) = ( ( u cyclShift 1 ) o. `' u ) ) | 
						
							| 167 | 162 166 | eqtr3d |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( Q |` ran u ) = ( ( u cyclShift 1 ) o. `' u ) ) | 
						
							| 168 | 167 | rneqd |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ran ( Q |` ran u ) = ran ( ( u cyclShift 1 ) o. `' u ) ) | 
						
							| 169 |  | 1zzd |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> 1 e. ZZ ) | 
						
							| 170 |  | cshf1o |  |-  ( ( u e. Word D /\ u : dom u -1-1-> D /\ 1 e. ZZ ) -> ( u cyclShift 1 ) : dom u -1-1-onto-> ran u ) | 
						
							| 171 | 165 77 169 170 | syl3anc |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( u cyclShift 1 ) : dom u -1-1-onto-> ran u ) | 
						
							| 172 | 79 152 | syl |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> `' u : ran u -1-1-onto-> dom u ) | 
						
							| 173 |  | f1oco |  |-  ( ( ( u cyclShift 1 ) : dom u -1-1-onto-> ran u /\ `' u : ran u -1-1-onto-> dom u ) -> ( ( u cyclShift 1 ) o. `' u ) : ran u -1-1-onto-> ran u ) | 
						
							| 174 | 171 172 173 | syl2anc |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( u cyclShift 1 ) o. `' u ) : ran u -1-1-onto-> ran u ) | 
						
							| 175 |  | f1ofo |  |-  ( ( ( u cyclShift 1 ) o. `' u ) : ran u -1-1-onto-> ran u -> ( ( u cyclShift 1 ) o. `' u ) : ran u -onto-> ran u ) | 
						
							| 176 |  | forn |  |-  ( ( ( u cyclShift 1 ) o. `' u ) : ran u -onto-> ran u -> ran ( ( u cyclShift 1 ) o. `' u ) = ran u ) | 
						
							| 177 | 174 175 176 | 3syl |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ran ( ( u cyclShift 1 ) o. `' u ) = ran u ) | 
						
							| 178 | 168 177 | eqtrd |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ran ( Q |` ran u ) = ran u ) | 
						
							| 179 |  | ssid |  |-  ran u C_ ran u | 
						
							| 180 | 178 179 | eqsstrdi |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ran ( Q |` ran u ) C_ ran u ) | 
						
							| 181 |  | cores |  |-  ( ran ( Q |` ran u ) C_ ran u -> ( ( `' ( u u. f ) |` ran u ) o. ( Q |` ran u ) ) = ( `' ( u u. f ) o. ( Q |` ran u ) ) ) | 
						
							| 182 | 180 181 | syl |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' ( u u. f ) |` ran u ) o. ( Q |` ran u ) ) = ( `' ( u u. f ) o. ( Q |` ran u ) ) ) | 
						
							| 183 | 149 163 182 | 3eqtrrd |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( `' ( u u. f ) o. ( Q |` ran u ) ) = ( ( `' u o. ( M ` u ) ) |` ran u ) ) | 
						
							| 184 | 147 183 | eqtrid |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' ( u u. f ) o. Q ) |` ran u ) = ( ( `' u o. ( M ` u ) ) |` ran u ) ) | 
						
							| 185 | 184 | coeq1d |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( ( `' ( u u. f ) o. Q ) |` ran u ) o. u ) = ( ( ( `' u o. ( M ` u ) ) |` ran u ) o. u ) ) | 
						
							| 186 |  | cores |  |-  ( ran u C_ ran u -> ( ( ( `' u o. ( M ` u ) ) |` ran u ) o. u ) = ( ( `' u o. ( M ` u ) ) o. u ) ) | 
						
							| 187 | 179 186 | mp1i |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( ( `' u o. ( M ` u ) ) |` ran u ) o. u ) = ( ( `' u o. ( M ` u ) ) o. u ) ) | 
						
							| 188 | 185 187 | eqtrd |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( ( `' ( u u. f ) o. Q ) |` ran u ) o. u ) = ( ( `' u o. ( M ` u ) ) o. u ) ) | 
						
							| 189 |  | cores |  |-  ( ran u C_ ran u -> ( ( ( `' ( u u. f ) o. Q ) |` ran u ) o. u ) = ( ( `' ( u u. f ) o. Q ) o. u ) ) | 
						
							| 190 | 179 189 | mp1i |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( ( `' ( u u. f ) o. Q ) |` ran u ) o. u ) = ( ( `' ( u u. f ) o. Q ) o. u ) ) | 
						
							| 191 | 132 | adantr |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( # ` u ) = P ) | 
						
							| 192 | 1 2 3 4 164 165 77 191 | cycpmconjslem1 |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' u o. ( M ` u ) ) o. u ) = ( ( _I |` ( 0 ..^ P ) ) cyclShift 1 ) ) | 
						
							| 193 | 188 190 192 | 3eqtr3d |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' ( u u. f ) o. Q ) o. u ) = ( ( _I |` ( 0 ..^ P ) ) cyclShift 1 ) ) | 
						
							| 194 | 122 146 193 | 3eqtrd |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) |` ( 0 ..^ P ) ) = ( ( _I |` ( 0 ..^ P ) ) cyclShift 1 ) ) | 
						
							| 195 |  | resco |  |-  ( ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) |` ( P ..^ N ) ) = ( ( `' ( u u. f ) o. Q ) o. ( ( u u. f ) |` ( P ..^ N ) ) ) | 
						
							| 196 | 139 | adantr |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> dom u = ( 0 ..^ P ) ) | 
						
							| 197 | 196 | difeq2d |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( 0 ..^ N ) \ dom u ) = ( ( 0 ..^ N ) \ ( 0 ..^ P ) ) ) | 
						
							| 198 |  | fzodif1 |  |-  ( P e. ( 0 ... N ) -> ( ( 0 ..^ N ) \ ( 0 ..^ P ) ) = ( P ..^ N ) ) | 
						
							| 199 | 8 198 | syl |  |-  ( ph -> ( ( 0 ..^ N ) \ ( 0 ..^ P ) ) = ( P ..^ N ) ) | 
						
							| 200 | 199 | ad3antrrr |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( 0 ..^ N ) \ ( 0 ..^ P ) ) = ( P ..^ N ) ) | 
						
							| 201 | 197 200 | eqtrd |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( 0 ..^ N ) \ dom u ) = ( P ..^ N ) ) | 
						
							| 202 | 201 | reseq2d |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( u u. f ) |` ( ( 0 ..^ N ) \ dom u ) ) = ( ( u u. f ) |` ( P ..^ N ) ) ) | 
						
							| 203 |  | fnunres2 |  |-  ( ( u Fn ( 0 ..^ P ) /\ f Fn ( ( 0 ..^ N ) \ dom u ) /\ ( ( 0 ..^ P ) i^i ( ( 0 ..^ N ) \ dom u ) ) = (/) ) -> ( ( u u. f ) |` ( ( 0 ..^ N ) \ dom u ) ) = f ) | 
						
							| 204 | 136 138 143 203 | syl3anc |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( u u. f ) |` ( ( 0 ..^ N ) \ dom u ) ) = f ) | 
						
							| 205 | 202 204 | eqtr3d |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( u u. f ) |` ( P ..^ N ) ) = f ) | 
						
							| 206 | 205 | coeq2d |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' ( u u. f ) o. Q ) o. ( ( u u. f ) |` ( P ..^ N ) ) ) = ( ( `' ( u u. f ) o. Q ) o. f ) ) | 
						
							| 207 | 195 206 | eqtrid |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) |` ( P ..^ N ) ) = ( ( `' ( u u. f ) o. Q ) o. f ) ) | 
						
							| 208 | 150 | reseq1i |  |-  ( `' ( u u. f ) |` ( D \ ran u ) ) = ( ( `' u u. `' f ) |` ( D \ ran u ) ) | 
						
							| 209 |  | fnunres2 |  |-  ( ( `' u Fn ran u /\ `' f Fn ( D \ ran u ) /\ ( ran u i^i ( D \ ran u ) ) = (/) ) -> ( ( `' u u. `' f ) |` ( D \ ran u ) ) = `' f ) | 
						
							| 210 | 154 157 84 209 | syl3anc |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' u u. `' f ) |` ( D \ ran u ) ) = `' f ) | 
						
							| 211 | 208 210 | eqtrid |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( `' ( u u. f ) |` ( D \ ran u ) ) = `' f ) | 
						
							| 212 | 161 | reseq1d |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( M ` u ) |` ( D \ ran u ) ) = ( Q |` ( D \ ran u ) ) ) | 
						
							| 213 | 4 164 165 77 | tocycfvres2 |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( M ` u ) |` ( D \ ran u ) ) = ( _I |` ( D \ ran u ) ) ) | 
						
							| 214 | 212 213 | eqtr3d |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( Q |` ( D \ ran u ) ) = ( _I |` ( D \ ran u ) ) ) | 
						
							| 215 | 211 214 | coeq12d |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' ( u u. f ) |` ( D \ ran u ) ) o. ( Q |` ( D \ ran u ) ) ) = ( `' f o. ( _I |` ( D \ ran u ) ) ) ) | 
						
							| 216 | 214 | rneqd |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ran ( Q |` ( D \ ran u ) ) = ran ( _I |` ( D \ ran u ) ) ) | 
						
							| 217 |  | rnresi |  |-  ran ( _I |` ( D \ ran u ) ) = ( D \ ran u ) | 
						
							| 218 | 217 | eqimssi |  |-  ran ( _I |` ( D \ ran u ) ) C_ ( D \ ran u ) | 
						
							| 219 | 216 218 | eqsstrdi |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ran ( Q |` ( D \ ran u ) ) C_ ( D \ ran u ) ) | 
						
							| 220 |  | cores |  |-  ( ran ( Q |` ( D \ ran u ) ) C_ ( D \ ran u ) -> ( ( `' ( u u. f ) |` ( D \ ran u ) ) o. ( Q |` ( D \ ran u ) ) ) = ( `' ( u u. f ) o. ( Q |` ( D \ ran u ) ) ) ) | 
						
							| 221 | 219 220 | syl |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' ( u u. f ) |` ( D \ ran u ) ) o. ( Q |` ( D \ ran u ) ) ) = ( `' ( u u. f ) o. ( Q |` ( D \ ran u ) ) ) ) | 
						
							| 222 |  | resco |  |-  ( ( `' ( u u. f ) o. Q ) |` ( D \ ran u ) ) = ( `' ( u u. f ) o. ( Q |` ( D \ ran u ) ) ) | 
						
							| 223 | 221 222 | eqtr4di |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' ( u u. f ) |` ( D \ ran u ) ) o. ( Q |` ( D \ ran u ) ) ) = ( ( `' ( u u. f ) o. Q ) |` ( D \ ran u ) ) ) | 
						
							| 224 | 215 223 | eqtr3d |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( `' f o. ( _I |` ( D \ ran u ) ) ) = ( ( `' ( u u. f ) o. Q ) |` ( D \ ran u ) ) ) | 
						
							| 225 | 224 | coeq1d |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' f o. ( _I |` ( D \ ran u ) ) ) o. f ) = ( ( ( `' ( u u. f ) o. Q ) |` ( D \ ran u ) ) o. f ) ) | 
						
							| 226 |  | f1of |  |-  ( `' f : ( D \ ran u ) -1-1-onto-> ( ( 0 ..^ N ) \ dom u ) -> `' f : ( D \ ran u ) --> ( ( 0 ..^ N ) \ dom u ) ) | 
						
							| 227 |  | fcoi1 |  |-  ( `' f : ( D \ ran u ) --> ( ( 0 ..^ N ) \ dom u ) -> ( `' f o. ( _I |` ( D \ ran u ) ) ) = `' f ) | 
						
							| 228 | 80 155 226 227 | 4syl |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( `' f o. ( _I |` ( D \ ran u ) ) ) = `' f ) | 
						
							| 229 | 228 | coeq1d |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' f o. ( _I |` ( D \ ran u ) ) ) o. f ) = ( `' f o. f ) ) | 
						
							| 230 |  | f1ococnv1 |  |-  ( f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) -> ( `' f o. f ) = ( _I |` ( ( 0 ..^ N ) \ dom u ) ) ) | 
						
							| 231 | 80 230 | syl |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( `' f o. f ) = ( _I |` ( ( 0 ..^ N ) \ dom u ) ) ) | 
						
							| 232 | 201 | reseq2d |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( _I |` ( ( 0 ..^ N ) \ dom u ) ) = ( _I |` ( P ..^ N ) ) ) | 
						
							| 233 | 229 231 232 | 3eqtrd |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' f o. ( _I |` ( D \ ran u ) ) ) o. f ) = ( _I |` ( P ..^ N ) ) ) | 
						
							| 234 |  | f1of |  |-  ( f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) -> f : ( ( 0 ..^ N ) \ dom u ) --> ( D \ ran u ) ) | 
						
							| 235 |  | frn |  |-  ( f : ( ( 0 ..^ N ) \ dom u ) --> ( D \ ran u ) -> ran f C_ ( D \ ran u ) ) | 
						
							| 236 |  | cores |  |-  ( ran f C_ ( D \ ran u ) -> ( ( ( `' ( u u. f ) o. Q ) |` ( D \ ran u ) ) o. f ) = ( ( `' ( u u. f ) o. Q ) o. f ) ) | 
						
							| 237 | 80 234 235 236 | 4syl |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( ( `' ( u u. f ) o. Q ) |` ( D \ ran u ) ) o. f ) = ( ( `' ( u u. f ) o. Q ) o. f ) ) | 
						
							| 238 | 225 233 237 | 3eqtr3rd |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' ( u u. f ) o. Q ) o. f ) = ( _I |` ( P ..^ N ) ) ) | 
						
							| 239 | 207 238 | eqtrd |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) |` ( P ..^ N ) ) = ( _I |` ( P ..^ N ) ) ) | 
						
							| 240 | 194 239 | uneq12d |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) |` ( 0 ..^ P ) ) u. ( ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) |` ( P ..^ N ) ) ) = ( ( ( _I |` ( 0 ..^ P ) ) cyclShift 1 ) u. ( _I |` ( P ..^ N ) ) ) ) | 
						
							| 241 | 120 240 | eqtrd |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) = ( ( ( _I |` ( 0 ..^ P ) ) cyclShift 1 ) u. ( _I |` ( P ..^ N ) ) ) ) | 
						
							| 242 |  | vex |  |-  u e. _V | 
						
							| 243 |  | vex |  |-  f e. _V | 
						
							| 244 | 242 243 | unex |  |-  ( u u. f ) e. _V | 
						
							| 245 |  | f1oeq1 |  |-  ( q = ( u u. f ) -> ( q : ( 0 ..^ N ) -1-1-onto-> D <-> ( u u. f ) : ( 0 ..^ N ) -1-1-onto-> D ) ) | 
						
							| 246 |  | cnveq |  |-  ( q = ( u u. f ) -> `' q = `' ( u u. f ) ) | 
						
							| 247 | 246 | coeq1d |  |-  ( q = ( u u. f ) -> ( `' q o. Q ) = ( `' ( u u. f ) o. Q ) ) | 
						
							| 248 |  | id |  |-  ( q = ( u u. f ) -> q = ( u u. f ) ) | 
						
							| 249 | 247 248 | coeq12d |  |-  ( q = ( u u. f ) -> ( ( `' q o. Q ) o. q ) = ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) ) | 
						
							| 250 | 249 | eqeq1d |  |-  ( q = ( u u. f ) -> ( ( ( `' q o. Q ) o. q ) = ( ( ( _I |` ( 0 ..^ P ) ) cyclShift 1 ) u. ( _I |` ( P ..^ N ) ) ) <-> ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) = ( ( ( _I |` ( 0 ..^ P ) ) cyclShift 1 ) u. ( _I |` ( P ..^ N ) ) ) ) ) | 
						
							| 251 | 245 250 | anbi12d |  |-  ( q = ( u u. f ) -> ( ( q : ( 0 ..^ N ) -1-1-onto-> D /\ ( ( `' q o. Q ) o. q ) = ( ( ( _I |` ( 0 ..^ P ) ) cyclShift 1 ) u. ( _I |` ( P ..^ N ) ) ) ) <-> ( ( u u. f ) : ( 0 ..^ N ) -1-1-onto-> D /\ ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) = ( ( ( _I |` ( 0 ..^ P ) ) cyclShift 1 ) u. ( _I |` ( P ..^ N ) ) ) ) ) ) | 
						
							| 252 | 244 251 | spcev |  |-  ( ( ( u u. f ) : ( 0 ..^ N ) -1-1-onto-> D /\ ( ( `' ( u u. f ) o. Q ) o. ( u u. f ) ) = ( ( ( _I |` ( 0 ..^ P ) ) cyclShift 1 ) u. ( _I |` ( P ..^ N ) ) ) ) -> E. q ( q : ( 0 ..^ N ) -1-1-onto-> D /\ ( ( `' q o. Q ) o. q ) = ( ( ( _I |` ( 0 ..^ P ) ) cyclShift 1 ) u. ( _I |` ( P ..^ N ) ) ) ) ) | 
						
							| 253 | 95 241 252 | syl2anc |  |-  ( ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) /\ f : ( ( 0 ..^ N ) \ dom u ) -1-1-onto-> ( D \ ran u ) ) -> E. q ( q : ( 0 ..^ N ) -1-1-onto-> D /\ ( ( `' q o. Q ) o. q ) = ( ( ( _I |` ( 0 ..^ P ) ) cyclShift 1 ) u. ( _I |` ( P ..^ N ) ) ) ) ) | 
						
							| 254 | 76 253 | exlimddv |  |-  ( ( ( ph /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ) /\ ( M ` u ) = Q ) -> E. q ( q : ( 0 ..^ N ) -1-1-onto-> D /\ ( ( `' q o. Q ) o. q ) = ( ( ( _I |` ( 0 ..^ P ) ) cyclShift 1 ) u. ( _I |` ( P ..^ N ) ) ) ) ) | 
						
							| 255 |  | nfcv |  |-  F/_ u M | 
						
							| 256 | 4 2 5 | tocycf |  |-  ( D e. Fin -> M : { w e. Word D | w : dom w -1-1-> D } --> B ) | 
						
							| 257 |  | ffn |  |-  ( M : { w e. Word D | w : dom w -1-1-> D } --> B -> M Fn { w e. Word D | w : dom w -1-1-> D } ) | 
						
							| 258 | 9 256 257 | 3syl |  |-  ( ph -> M Fn { w e. Word D | w : dom w -1-1-> D } ) | 
						
							| 259 | 10 1 | eleqtrdi |  |-  ( ph -> Q e. ( M " ( `' # " { P } ) ) ) | 
						
							| 260 | 255 258 259 | fvelimad |  |-  ( ph -> E. u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { P } ) ) ( M ` u ) = Q ) | 
						
							| 261 | 254 260 | r19.29a |  |-  ( ph -> E. q ( q : ( 0 ..^ N ) -1-1-onto-> D /\ ( ( `' q o. Q ) o. q ) = ( ( ( _I |` ( 0 ..^ P ) ) cyclShift 1 ) u. ( _I |` ( P ..^ N ) ) ) ) ) |