Step |
Hyp |
Ref |
Expression |
1 |
|
cycpmconjs.c |
|
2 |
|
cycpmconjs.s |
|
3 |
|
cycpmconjs.n |
|
4 |
|
cycpmconjs.m |
|
5 |
|
cycpmgcl.b |
|
6 |
|
simpr |
|
7 |
|
simplll |
|
8 |
|
simpr |
|
9 |
8
|
elin1d |
|
10 |
|
elrabi |
|
11 |
9 10
|
syl |
|
12 |
|
id |
|
13 |
|
dmeq |
|
14 |
|
eqidd |
|
15 |
12 13 14
|
f1eq123d |
|
16 |
15
|
elrab |
|
17 |
16
|
simprbi |
|
18 |
9 17
|
syl |
|
19 |
4 7 11 18 2
|
cycpmcl |
|
20 |
19
|
adantr |
|
21 |
20 5
|
eleqtrrdi |
|
22 |
6 21
|
eqeltrrd |
|
23 |
|
nfcv |
|
24 |
|
simpl |
|
25 |
4 2 5
|
tocycf |
|
26 |
|
ffn |
|
27 |
24 25 26
|
3syl |
|
28 |
27
|
adantr |
|
29 |
1
|
eleq2i |
|
30 |
29
|
a1i |
|
31 |
30
|
biimpa |
|
32 |
23 28 31
|
fvelimad |
|
33 |
22 32
|
r19.29a |
|
34 |
33
|
ex |
|
35 |
34
|
ssrdv |
|