| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfac8alem.2 |
|- F = recs ( G ) |
| 2 |
|
dfac8alem.3 |
|- G = ( f e. _V |-> ( g ` ( A \ ran f ) ) ) |
| 3 |
|
elex |
|- ( A e. C -> A e. _V ) |
| 4 |
|
difss |
|- ( A \ ( F " x ) ) C_ A |
| 5 |
|
elpw2g |
|- ( A e. _V -> ( ( A \ ( F " x ) ) e. ~P A <-> ( A \ ( F " x ) ) C_ A ) ) |
| 6 |
4 5
|
mpbiri |
|- ( A e. _V -> ( A \ ( F " x ) ) e. ~P A ) |
| 7 |
|
neeq1 |
|- ( y = ( A \ ( F " x ) ) -> ( y =/= (/) <-> ( A \ ( F " x ) ) =/= (/) ) ) |
| 8 |
|
fveq2 |
|- ( y = ( A \ ( F " x ) ) -> ( g ` y ) = ( g ` ( A \ ( F " x ) ) ) ) |
| 9 |
|
id |
|- ( y = ( A \ ( F " x ) ) -> y = ( A \ ( F " x ) ) ) |
| 10 |
8 9
|
eleq12d |
|- ( y = ( A \ ( F " x ) ) -> ( ( g ` y ) e. y <-> ( g ` ( A \ ( F " x ) ) ) e. ( A \ ( F " x ) ) ) ) |
| 11 |
7 10
|
imbi12d |
|- ( y = ( A \ ( F " x ) ) -> ( ( y =/= (/) -> ( g ` y ) e. y ) <-> ( ( A \ ( F " x ) ) =/= (/) -> ( g ` ( A \ ( F " x ) ) ) e. ( A \ ( F " x ) ) ) ) ) |
| 12 |
11
|
rspcv |
|- ( ( A \ ( F " x ) ) e. ~P A -> ( A. y e. ~P A ( y =/= (/) -> ( g ` y ) e. y ) -> ( ( A \ ( F " x ) ) =/= (/) -> ( g ` ( A \ ( F " x ) ) ) e. ( A \ ( F " x ) ) ) ) ) |
| 13 |
6 12
|
syl |
|- ( A e. _V -> ( A. y e. ~P A ( y =/= (/) -> ( g ` y ) e. y ) -> ( ( A \ ( F " x ) ) =/= (/) -> ( g ` ( A \ ( F " x ) ) ) e. ( A \ ( F " x ) ) ) ) ) |
| 14 |
13
|
3imp |
|- ( ( A e. _V /\ A. y e. ~P A ( y =/= (/) -> ( g ` y ) e. y ) /\ ( A \ ( F " x ) ) =/= (/) ) -> ( g ` ( A \ ( F " x ) ) ) e. ( A \ ( F " x ) ) ) |
| 15 |
1
|
tfr2 |
|- ( x e. On -> ( F ` x ) = ( G ` ( F |` x ) ) ) |
| 16 |
1
|
tfr1 |
|- F Fn On |
| 17 |
|
fnfun |
|- ( F Fn On -> Fun F ) |
| 18 |
16 17
|
ax-mp |
|- Fun F |
| 19 |
|
vex |
|- x e. _V |
| 20 |
|
resfunexg |
|- ( ( Fun F /\ x e. _V ) -> ( F |` x ) e. _V ) |
| 21 |
18 19 20
|
mp2an |
|- ( F |` x ) e. _V |
| 22 |
|
rneq |
|- ( f = ( F |` x ) -> ran f = ran ( F |` x ) ) |
| 23 |
|
df-ima |
|- ( F " x ) = ran ( F |` x ) |
| 24 |
22 23
|
eqtr4di |
|- ( f = ( F |` x ) -> ran f = ( F " x ) ) |
| 25 |
24
|
difeq2d |
|- ( f = ( F |` x ) -> ( A \ ran f ) = ( A \ ( F " x ) ) ) |
| 26 |
25
|
fveq2d |
|- ( f = ( F |` x ) -> ( g ` ( A \ ran f ) ) = ( g ` ( A \ ( F " x ) ) ) ) |
| 27 |
|
fvex |
|- ( g ` ( A \ ( F " x ) ) ) e. _V |
| 28 |
26 2 27
|
fvmpt |
|- ( ( F |` x ) e. _V -> ( G ` ( F |` x ) ) = ( g ` ( A \ ( F " x ) ) ) ) |
| 29 |
21 28
|
ax-mp |
|- ( G ` ( F |` x ) ) = ( g ` ( A \ ( F " x ) ) ) |
| 30 |
15 29
|
eqtrdi |
|- ( x e. On -> ( F ` x ) = ( g ` ( A \ ( F " x ) ) ) ) |
| 31 |
30
|
eleq1d |
|- ( x e. On -> ( ( F ` x ) e. ( A \ ( F " x ) ) <-> ( g ` ( A \ ( F " x ) ) ) e. ( A \ ( F " x ) ) ) ) |
| 32 |
14 31
|
syl5ibrcom |
|- ( ( A e. _V /\ A. y e. ~P A ( y =/= (/) -> ( g ` y ) e. y ) /\ ( A \ ( F " x ) ) =/= (/) ) -> ( x e. On -> ( F ` x ) e. ( A \ ( F " x ) ) ) ) |
| 33 |
32
|
3expia |
|- ( ( A e. _V /\ A. y e. ~P A ( y =/= (/) -> ( g ` y ) e. y ) ) -> ( ( A \ ( F " x ) ) =/= (/) -> ( x e. On -> ( F ` x ) e. ( A \ ( F " x ) ) ) ) ) |
| 34 |
33
|
com23 |
|- ( ( A e. _V /\ A. y e. ~P A ( y =/= (/) -> ( g ` y ) e. y ) ) -> ( x e. On -> ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) ) ) |
| 35 |
34
|
ralrimiv |
|- ( ( A e. _V /\ A. y e. ~P A ( y =/= (/) -> ( g ` y ) e. y ) ) -> A. x e. On ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) ) |
| 36 |
35
|
ex |
|- ( A e. _V -> ( A. y e. ~P A ( y =/= (/) -> ( g ` y ) e. y ) -> A. x e. On ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) ) ) |
| 37 |
16
|
tz7.49c |
|- ( ( A e. _V /\ A. x e. On ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) ) -> E. x e. On ( F |` x ) : x -1-1-onto-> A ) |
| 38 |
37
|
ex |
|- ( A e. _V -> ( A. x e. On ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) -> E. x e. On ( F |` x ) : x -1-1-onto-> A ) ) |
| 39 |
19
|
f1oen |
|- ( ( F |` x ) : x -1-1-onto-> A -> x ~~ A ) |
| 40 |
|
isnumi |
|- ( ( x e. On /\ x ~~ A ) -> A e. dom card ) |
| 41 |
39 40
|
sylan2 |
|- ( ( x e. On /\ ( F |` x ) : x -1-1-onto-> A ) -> A e. dom card ) |
| 42 |
41
|
rexlimiva |
|- ( E. x e. On ( F |` x ) : x -1-1-onto-> A -> A e. dom card ) |
| 43 |
38 42
|
syl6 |
|- ( A e. _V -> ( A. x e. On ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) -> A e. dom card ) ) |
| 44 |
36 43
|
syld |
|- ( A e. _V -> ( A. y e. ~P A ( y =/= (/) -> ( g ` y ) e. y ) -> A e. dom card ) ) |
| 45 |
3 44
|
syl |
|- ( A e. C -> ( A. y e. ~P A ( y =/= (/) -> ( g ` y ) e. y ) -> A e. dom card ) ) |
| 46 |
45
|
exlimdv |
|- ( A e. C -> ( E. g A. y e. ~P A ( y =/= (/) -> ( g ` y ) e. y ) -> A e. dom card ) ) |