Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( A e. V /\ B e. ( A |_| 1o ) ) -> A e. V ) |
2 |
|
1oex |
|- 1o e. _V |
3 |
|
djuex |
|- ( ( A e. V /\ 1o e. _V ) -> ( A |_| 1o ) e. _V ) |
4 |
1 2 3
|
sylancl |
|- ( ( A e. V /\ B e. ( A |_| 1o ) ) -> ( A |_| 1o ) e. _V ) |
5 |
|
simpr |
|- ( ( A e. V /\ B e. ( A |_| 1o ) ) -> B e. ( A |_| 1o ) ) |
6 |
|
df1o2 |
|- 1o = { (/) } |
7 |
6
|
xpeq2i |
|- ( { 1o } X. 1o ) = ( { 1o } X. { (/) } ) |
8 |
|
0ex |
|- (/) e. _V |
9 |
2 8
|
xpsn |
|- ( { 1o } X. { (/) } ) = { <. 1o , (/) >. } |
10 |
7 9
|
eqtri |
|- ( { 1o } X. 1o ) = { <. 1o , (/) >. } |
11 |
|
ssun2 |
|- ( { 1o } X. 1o ) C_ ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) |
12 |
10 11
|
eqsstrri |
|- { <. 1o , (/) >. } C_ ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) |
13 |
|
opex |
|- <. 1o , (/) >. e. _V |
14 |
13
|
snss |
|- ( <. 1o , (/) >. e. ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) <-> { <. 1o , (/) >. } C_ ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) ) |
15 |
12 14
|
mpbir |
|- <. 1o , (/) >. e. ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) |
16 |
|
df-dju |
|- ( A |_| 1o ) = ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) |
17 |
15 16
|
eleqtrri |
|- <. 1o , (/) >. e. ( A |_| 1o ) |
18 |
17
|
a1i |
|- ( ( A e. V /\ B e. ( A |_| 1o ) ) -> <. 1o , (/) >. e. ( A |_| 1o ) ) |
19 |
|
difsnen |
|- ( ( ( A |_| 1o ) e. _V /\ B e. ( A |_| 1o ) /\ <. 1o , (/) >. e. ( A |_| 1o ) ) -> ( ( A |_| 1o ) \ { B } ) ~~ ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) ) |
20 |
4 5 18 19
|
syl3anc |
|- ( ( A e. V /\ B e. ( A |_| 1o ) ) -> ( ( A |_| 1o ) \ { B } ) ~~ ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) ) |
21 |
16
|
difeq1i |
|- ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) = ( ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) \ { <. 1o , (/) >. } ) |
22 |
|
xp01disjl |
|- ( ( { (/) } X. A ) i^i ( { 1o } X. 1o ) ) = (/) |
23 |
|
disj3 |
|- ( ( ( { (/) } X. A ) i^i ( { 1o } X. 1o ) ) = (/) <-> ( { (/) } X. A ) = ( ( { (/) } X. A ) \ ( { 1o } X. 1o ) ) ) |
24 |
22 23
|
mpbi |
|- ( { (/) } X. A ) = ( ( { (/) } X. A ) \ ( { 1o } X. 1o ) ) |
25 |
|
difun2 |
|- ( ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) \ ( { 1o } X. 1o ) ) = ( ( { (/) } X. A ) \ ( { 1o } X. 1o ) ) |
26 |
10
|
difeq2i |
|- ( ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) \ ( { 1o } X. 1o ) ) = ( ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) \ { <. 1o , (/) >. } ) |
27 |
24 25 26
|
3eqtr2i |
|- ( { (/) } X. A ) = ( ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) \ { <. 1o , (/) >. } ) |
28 |
21 27
|
eqtr4i |
|- ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) = ( { (/) } X. A ) |
29 |
|
xpsnen2g |
|- ( ( (/) e. _V /\ A e. V ) -> ( { (/) } X. A ) ~~ A ) |
30 |
8 1 29
|
sylancr |
|- ( ( A e. V /\ B e. ( A |_| 1o ) ) -> ( { (/) } X. A ) ~~ A ) |
31 |
28 30
|
eqbrtrid |
|- ( ( A e. V /\ B e. ( A |_| 1o ) ) -> ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) ~~ A ) |
32 |
|
entr |
|- ( ( ( ( A |_| 1o ) \ { B } ) ~~ ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) /\ ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) ~~ A ) -> ( ( A |_| 1o ) \ { B } ) ~~ A ) |
33 |
20 31 32
|
syl2anc |
|- ( ( A e. V /\ B e. ( A |_| 1o ) ) -> ( ( A |_| 1o ) \ { B } ) ~~ A ) |