Metamath Proof Explorer


Theorem efginvrel1

Description: The inverse of the reverse of a word composed with the word relates to the identity. (This provides an explicit expression for the representation of the group inverse, given a representative of the free group equivalence class.) (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Hypotheses efgval.w
|- W = ( _I ` Word ( I X. 2o ) )
efgval.r
|- .~ = ( ~FG ` I )
efgval2.m
|- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. )
efgval2.t
|- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) )
Assertion efginvrel1
|- ( A e. W -> ( ( M o. ( reverse ` A ) ) ++ A ) .~ (/) )

Proof

Step Hyp Ref Expression
1 efgval.w
 |-  W = ( _I ` Word ( I X. 2o ) )
2 efgval.r
 |-  .~ = ( ~FG ` I )
3 efgval2.m
 |-  M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. )
4 efgval2.t
 |-  T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) )
5 fviss
 |-  ( _I ` Word ( I X. 2o ) ) C_ Word ( I X. 2o )
6 1 5 eqsstri
 |-  W C_ Word ( I X. 2o )
7 6 sseli
 |-  ( A e. W -> A e. Word ( I X. 2o ) )
8 revcl
 |-  ( A e. Word ( I X. 2o ) -> ( reverse ` A ) e. Word ( I X. 2o ) )
9 7 8 syl
 |-  ( A e. W -> ( reverse ` A ) e. Word ( I X. 2o ) )
10 3 efgmf
 |-  M : ( I X. 2o ) --> ( I X. 2o )
11 revco
 |-  ( ( ( reverse ` A ) e. Word ( I X. 2o ) /\ M : ( I X. 2o ) --> ( I X. 2o ) ) -> ( M o. ( reverse ` ( reverse ` A ) ) ) = ( reverse ` ( M o. ( reverse ` A ) ) ) )
12 9 10 11 sylancl
 |-  ( A e. W -> ( M o. ( reverse ` ( reverse ` A ) ) ) = ( reverse ` ( M o. ( reverse ` A ) ) ) )
13 revrev
 |-  ( A e. Word ( I X. 2o ) -> ( reverse ` ( reverse ` A ) ) = A )
14 7 13 syl
 |-  ( A e. W -> ( reverse ` ( reverse ` A ) ) = A )
15 14 coeq2d
 |-  ( A e. W -> ( M o. ( reverse ` ( reverse ` A ) ) ) = ( M o. A ) )
16 12 15 eqtr3d
 |-  ( A e. W -> ( reverse ` ( M o. ( reverse ` A ) ) ) = ( M o. A ) )
17 16 coeq2d
 |-  ( A e. W -> ( M o. ( reverse ` ( M o. ( reverse ` A ) ) ) ) = ( M o. ( M o. A ) ) )
18 wrdf
 |-  ( A e. Word ( I X. 2o ) -> A : ( 0 ..^ ( # ` A ) ) --> ( I X. 2o ) )
19 7 18 syl
 |-  ( A e. W -> A : ( 0 ..^ ( # ` A ) ) --> ( I X. 2o ) )
20 19 ffvelrnda
 |-  ( ( A e. W /\ c e. ( 0 ..^ ( # ` A ) ) ) -> ( A ` c ) e. ( I X. 2o ) )
21 3 efgmnvl
 |-  ( ( A ` c ) e. ( I X. 2o ) -> ( M ` ( M ` ( A ` c ) ) ) = ( A ` c ) )
22 20 21 syl
 |-  ( ( A e. W /\ c e. ( 0 ..^ ( # ` A ) ) ) -> ( M ` ( M ` ( A ` c ) ) ) = ( A ` c ) )
23 22 mpteq2dva
 |-  ( A e. W -> ( c e. ( 0 ..^ ( # ` A ) ) |-> ( M ` ( M ` ( A ` c ) ) ) ) = ( c e. ( 0 ..^ ( # ` A ) ) |-> ( A ` c ) ) )
24 10 ffvelrni
 |-  ( ( A ` c ) e. ( I X. 2o ) -> ( M ` ( A ` c ) ) e. ( I X. 2o ) )
25 20 24 syl
 |-  ( ( A e. W /\ c e. ( 0 ..^ ( # ` A ) ) ) -> ( M ` ( A ` c ) ) e. ( I X. 2o ) )
26 fcompt
 |-  ( ( M : ( I X. 2o ) --> ( I X. 2o ) /\ A : ( 0 ..^ ( # ` A ) ) --> ( I X. 2o ) ) -> ( M o. A ) = ( c e. ( 0 ..^ ( # ` A ) ) |-> ( M ` ( A ` c ) ) ) )
27 10 19 26 sylancr
 |-  ( A e. W -> ( M o. A ) = ( c e. ( 0 ..^ ( # ` A ) ) |-> ( M ` ( A ` c ) ) ) )
28 10 a1i
 |-  ( A e. W -> M : ( I X. 2o ) --> ( I X. 2o ) )
29 28 feqmptd
 |-  ( A e. W -> M = ( a e. ( I X. 2o ) |-> ( M ` a ) ) )
30 fveq2
 |-  ( a = ( M ` ( A ` c ) ) -> ( M ` a ) = ( M ` ( M ` ( A ` c ) ) ) )
31 25 27 29 30 fmptco
 |-  ( A e. W -> ( M o. ( M o. A ) ) = ( c e. ( 0 ..^ ( # ` A ) ) |-> ( M ` ( M ` ( A ` c ) ) ) ) )
32 19 feqmptd
 |-  ( A e. W -> A = ( c e. ( 0 ..^ ( # ` A ) ) |-> ( A ` c ) ) )
33 23 31 32 3eqtr4d
 |-  ( A e. W -> ( M o. ( M o. A ) ) = A )
34 17 33 eqtrd
 |-  ( A e. W -> ( M o. ( reverse ` ( M o. ( reverse ` A ) ) ) ) = A )
35 34 oveq2d
 |-  ( A e. W -> ( ( M o. ( reverse ` A ) ) ++ ( M o. ( reverse ` ( M o. ( reverse ` A ) ) ) ) ) = ( ( M o. ( reverse ` A ) ) ++ A ) )
36 wrdco
 |-  ( ( ( reverse ` A ) e. Word ( I X. 2o ) /\ M : ( I X. 2o ) --> ( I X. 2o ) ) -> ( M o. ( reverse ` A ) ) e. Word ( I X. 2o ) )
37 9 10 36 sylancl
 |-  ( A e. W -> ( M o. ( reverse ` A ) ) e. Word ( I X. 2o ) )
38 1 efgrcl
 |-  ( A e. W -> ( I e. _V /\ W = Word ( I X. 2o ) ) )
39 38 simprd
 |-  ( A e. W -> W = Word ( I X. 2o ) )
40 37 39 eleqtrrd
 |-  ( A e. W -> ( M o. ( reverse ` A ) ) e. W )
41 1 2 3 4 efginvrel2
 |-  ( ( M o. ( reverse ` A ) ) e. W -> ( ( M o. ( reverse ` A ) ) ++ ( M o. ( reverse ` ( M o. ( reverse ` A ) ) ) ) ) .~ (/) )
42 40 41 syl
 |-  ( A e. W -> ( ( M o. ( reverse ` A ) ) ++ ( M o. ( reverse ` ( M o. ( reverse ` A ) ) ) ) ) .~ (/) )
43 35 42 eqbrtrrd
 |-  ( A e. W -> ( ( M o. ( reverse ` A ) ) ++ A ) .~ (/) )