Metamath Proof Explorer


Theorem efginvrel1

Description: The inverse of the reverse of a word composed with the word relates to the identity. (This provides an explicit expression for the representation of the group inverse, given a representative of the free group equivalence class.) (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Hypotheses efgval.w 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) )
efgval.r = ( ~FG𝐼 )
efgval2.m 𝑀 = ( 𝑦𝐼 , 𝑧 ∈ 2o ↦ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ )
efgval2.t 𝑇 = ( 𝑣𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice ⟨ 𝑛 , 𝑛 , ⟨“ 𝑤 ( 𝑀𝑤 ) ”⟩ ⟩ ) ) )
Assertion efginvrel1 ( 𝐴𝑊 → ( ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ++ 𝐴 ) ∅ )

Proof

Step Hyp Ref Expression
1 efgval.w 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) )
2 efgval.r = ( ~FG𝐼 )
3 efgval2.m 𝑀 = ( 𝑦𝐼 , 𝑧 ∈ 2o ↦ ⟨ 𝑦 , ( 1o𝑧 ) ⟩ )
4 efgval2.t 𝑇 = ( 𝑣𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice ⟨ 𝑛 , 𝑛 , ⟨“ 𝑤 ( 𝑀𝑤 ) ”⟩ ⟩ ) ) )
5 fviss ( I ‘ Word ( 𝐼 × 2o ) ) ⊆ Word ( 𝐼 × 2o )
6 1 5 eqsstri 𝑊 ⊆ Word ( 𝐼 × 2o )
7 6 sseli ( 𝐴𝑊𝐴 ∈ Word ( 𝐼 × 2o ) )
8 revcl ( 𝐴 ∈ Word ( 𝐼 × 2o ) → ( reverse ‘ 𝐴 ) ∈ Word ( 𝐼 × 2o ) )
9 7 8 syl ( 𝐴𝑊 → ( reverse ‘ 𝐴 ) ∈ Word ( 𝐼 × 2o ) )
10 3 efgmf 𝑀 : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o )
11 revco ( ( ( reverse ‘ 𝐴 ) ∈ Word ( 𝐼 × 2o ) ∧ 𝑀 : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) ) → ( 𝑀 ∘ ( reverse ‘ ( reverse ‘ 𝐴 ) ) ) = ( reverse ‘ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) )
12 9 10 11 sylancl ( 𝐴𝑊 → ( 𝑀 ∘ ( reverse ‘ ( reverse ‘ 𝐴 ) ) ) = ( reverse ‘ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) )
13 revrev ( 𝐴 ∈ Word ( 𝐼 × 2o ) → ( reverse ‘ ( reverse ‘ 𝐴 ) ) = 𝐴 )
14 7 13 syl ( 𝐴𝑊 → ( reverse ‘ ( reverse ‘ 𝐴 ) ) = 𝐴 )
15 14 coeq2d ( 𝐴𝑊 → ( 𝑀 ∘ ( reverse ‘ ( reverse ‘ 𝐴 ) ) ) = ( 𝑀𝐴 ) )
16 12 15 eqtr3d ( 𝐴𝑊 → ( reverse ‘ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) = ( 𝑀𝐴 ) )
17 16 coeq2d ( 𝐴𝑊 → ( 𝑀 ∘ ( reverse ‘ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) ) = ( 𝑀 ∘ ( 𝑀𝐴 ) ) )
18 wrdf ( 𝐴 ∈ Word ( 𝐼 × 2o ) → 𝐴 : ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⟶ ( 𝐼 × 2o ) )
19 7 18 syl ( 𝐴𝑊𝐴 : ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⟶ ( 𝐼 × 2o ) )
20 19 ffvelrnda ( ( 𝐴𝑊𝑐 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) → ( 𝐴𝑐 ) ∈ ( 𝐼 × 2o ) )
21 3 efgmnvl ( ( 𝐴𝑐 ) ∈ ( 𝐼 × 2o ) → ( 𝑀 ‘ ( 𝑀 ‘ ( 𝐴𝑐 ) ) ) = ( 𝐴𝑐 ) )
22 20 21 syl ( ( 𝐴𝑊𝑐 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) → ( 𝑀 ‘ ( 𝑀 ‘ ( 𝐴𝑐 ) ) ) = ( 𝐴𝑐 ) )
23 22 mpteq2dva ( 𝐴𝑊 → ( 𝑐 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ↦ ( 𝑀 ‘ ( 𝑀 ‘ ( 𝐴𝑐 ) ) ) ) = ( 𝑐 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ↦ ( 𝐴𝑐 ) ) )
24 10 ffvelrni ( ( 𝐴𝑐 ) ∈ ( 𝐼 × 2o ) → ( 𝑀 ‘ ( 𝐴𝑐 ) ) ∈ ( 𝐼 × 2o ) )
25 20 24 syl ( ( 𝐴𝑊𝑐 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) → ( 𝑀 ‘ ( 𝐴𝑐 ) ) ∈ ( 𝐼 × 2o ) )
26 fcompt ( ( 𝑀 : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) ∧ 𝐴 : ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⟶ ( 𝐼 × 2o ) ) → ( 𝑀𝐴 ) = ( 𝑐 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ↦ ( 𝑀 ‘ ( 𝐴𝑐 ) ) ) )
27 10 19 26 sylancr ( 𝐴𝑊 → ( 𝑀𝐴 ) = ( 𝑐 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ↦ ( 𝑀 ‘ ( 𝐴𝑐 ) ) ) )
28 10 a1i ( 𝐴𝑊𝑀 : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) )
29 28 feqmptd ( 𝐴𝑊𝑀 = ( 𝑎 ∈ ( 𝐼 × 2o ) ↦ ( 𝑀𝑎 ) ) )
30 fveq2 ( 𝑎 = ( 𝑀 ‘ ( 𝐴𝑐 ) ) → ( 𝑀𝑎 ) = ( 𝑀 ‘ ( 𝑀 ‘ ( 𝐴𝑐 ) ) ) )
31 25 27 29 30 fmptco ( 𝐴𝑊 → ( 𝑀 ∘ ( 𝑀𝐴 ) ) = ( 𝑐 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ↦ ( 𝑀 ‘ ( 𝑀 ‘ ( 𝐴𝑐 ) ) ) ) )
32 19 feqmptd ( 𝐴𝑊𝐴 = ( 𝑐 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ↦ ( 𝐴𝑐 ) ) )
33 23 31 32 3eqtr4d ( 𝐴𝑊 → ( 𝑀 ∘ ( 𝑀𝐴 ) ) = 𝐴 )
34 17 33 eqtrd ( 𝐴𝑊 → ( 𝑀 ∘ ( reverse ‘ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) ) = 𝐴 )
35 34 oveq2d ( 𝐴𝑊 → ( ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) ) ) = ( ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ++ 𝐴 ) )
36 wrdco ( ( ( reverse ‘ 𝐴 ) ∈ Word ( 𝐼 × 2o ) ∧ 𝑀 : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) ) → ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ∈ Word ( 𝐼 × 2o ) )
37 9 10 36 sylancl ( 𝐴𝑊 → ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ∈ Word ( 𝐼 × 2o ) )
38 1 efgrcl ( 𝐴𝑊 → ( 𝐼 ∈ V ∧ 𝑊 = Word ( 𝐼 × 2o ) ) )
39 38 simprd ( 𝐴𝑊𝑊 = Word ( 𝐼 × 2o ) )
40 37 39 eleqtrrd ( 𝐴𝑊 → ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ∈ 𝑊 )
41 1 2 3 4 efginvrel2 ( ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ∈ 𝑊 → ( ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) ) ) ∅ )
42 40 41 syl ( 𝐴𝑊 → ( ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ++ ( 𝑀 ∘ ( reverse ‘ ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ) ) ) ∅ )
43 35 42 eqbrtrrd ( 𝐴𝑊 → ( ( 𝑀 ∘ ( reverse ‘ 𝐴 ) ) ++ 𝐴 ) ∅ )