| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eigpos.1 |
|- A e. ~H |
| 2 |
|
eigpos.2 |
|- B e. CC |
| 3 |
|
oveq2 |
|- ( ( T ` A ) = ( B .h A ) -> ( A .ih ( T ` A ) ) = ( A .ih ( B .h A ) ) ) |
| 4 |
3
|
eleq1d |
|- ( ( T ` A ) = ( B .h A ) -> ( ( A .ih ( T ` A ) ) e. RR <-> ( A .ih ( B .h A ) ) e. RR ) ) |
| 5 |
2 1
|
hvmulcli |
|- ( B .h A ) e. ~H |
| 6 |
|
hire |
|- ( ( A e. ~H /\ ( B .h A ) e. ~H ) -> ( ( A .ih ( B .h A ) ) e. RR <-> ( A .ih ( B .h A ) ) = ( ( B .h A ) .ih A ) ) ) |
| 7 |
1 5 6
|
mp2an |
|- ( ( A .ih ( B .h A ) ) e. RR <-> ( A .ih ( B .h A ) ) = ( ( B .h A ) .ih A ) ) |
| 8 |
|
oveq1 |
|- ( ( T ` A ) = ( B .h A ) -> ( ( T ` A ) .ih A ) = ( ( B .h A ) .ih A ) ) |
| 9 |
3 8
|
eqeq12d |
|- ( ( T ` A ) = ( B .h A ) -> ( ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) <-> ( A .ih ( B .h A ) ) = ( ( B .h A ) .ih A ) ) ) |
| 10 |
7 9
|
bitr4id |
|- ( ( T ` A ) = ( B .h A ) -> ( ( A .ih ( B .h A ) ) e. RR <-> ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) ) ) |
| 11 |
4 10
|
bitrd |
|- ( ( T ` A ) = ( B .h A ) -> ( ( A .ih ( T ` A ) ) e. RR <-> ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) ) ) |
| 12 |
11
|
adantr |
|- ( ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) -> ( ( A .ih ( T ` A ) ) e. RR <-> ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) ) ) |
| 13 |
1 2
|
eigrei |
|- ( ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) -> ( ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) <-> B e. RR ) ) |
| 14 |
12 13
|
bitrd |
|- ( ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) -> ( ( A .ih ( T ` A ) ) e. RR <-> B e. RR ) ) |
| 15 |
14
|
biimpac |
|- ( ( ( A .ih ( T ` A ) ) e. RR /\ ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) ) -> B e. RR ) |
| 16 |
15
|
adantlr |
|- ( ( ( ( A .ih ( T ` A ) ) e. RR /\ 0 <_ ( A .ih ( T ` A ) ) ) /\ ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) ) -> B e. RR ) |
| 17 |
|
hiidrcl |
|- ( A e. ~H -> ( A .ih A ) e. RR ) |
| 18 |
1 17
|
mp1i |
|- ( ( ( ( A .ih ( T ` A ) ) e. RR /\ 0 <_ ( A .ih ( T ` A ) ) ) /\ ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) ) -> ( A .ih A ) e. RR ) |
| 19 |
|
ax-his4 |
|- ( ( A e. ~H /\ A =/= 0h ) -> 0 < ( A .ih A ) ) |
| 20 |
1 19
|
mpan |
|- ( A =/= 0h -> 0 < ( A .ih A ) ) |
| 21 |
20
|
ad2antll |
|- ( ( ( ( A .ih ( T ` A ) ) e. RR /\ 0 <_ ( A .ih ( T ` A ) ) ) /\ ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) ) -> 0 < ( A .ih A ) ) |
| 22 |
18 21
|
elrpd |
|- ( ( ( ( A .ih ( T ` A ) ) e. RR /\ 0 <_ ( A .ih ( T ` A ) ) ) /\ ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) ) -> ( A .ih A ) e. RR+ ) |
| 23 |
|
simplr |
|- ( ( ( ( A .ih ( T ` A ) ) e. RR /\ 0 <_ ( A .ih ( T ` A ) ) ) /\ ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) ) -> 0 <_ ( A .ih ( T ` A ) ) ) |
| 24 |
3
|
ad2antrl |
|- ( ( ( ( A .ih ( T ` A ) ) e. RR /\ 0 <_ ( A .ih ( T ` A ) ) ) /\ ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) ) -> ( A .ih ( T ` A ) ) = ( A .ih ( B .h A ) ) ) |
| 25 |
|
his5 |
|- ( ( B e. CC /\ A e. ~H /\ A e. ~H ) -> ( A .ih ( B .h A ) ) = ( ( * ` B ) x. ( A .ih A ) ) ) |
| 26 |
2 1 1 25
|
mp3an |
|- ( A .ih ( B .h A ) ) = ( ( * ` B ) x. ( A .ih A ) ) |
| 27 |
16
|
cjred |
|- ( ( ( ( A .ih ( T ` A ) ) e. RR /\ 0 <_ ( A .ih ( T ` A ) ) ) /\ ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) ) -> ( * ` B ) = B ) |
| 28 |
27
|
oveq1d |
|- ( ( ( ( A .ih ( T ` A ) ) e. RR /\ 0 <_ ( A .ih ( T ` A ) ) ) /\ ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) ) -> ( ( * ` B ) x. ( A .ih A ) ) = ( B x. ( A .ih A ) ) ) |
| 29 |
26 28
|
eqtrid |
|- ( ( ( ( A .ih ( T ` A ) ) e. RR /\ 0 <_ ( A .ih ( T ` A ) ) ) /\ ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) ) -> ( A .ih ( B .h A ) ) = ( B x. ( A .ih A ) ) ) |
| 30 |
24 29
|
eqtrd |
|- ( ( ( ( A .ih ( T ` A ) ) e. RR /\ 0 <_ ( A .ih ( T ` A ) ) ) /\ ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) ) -> ( A .ih ( T ` A ) ) = ( B x. ( A .ih A ) ) ) |
| 31 |
23 30
|
breqtrd |
|- ( ( ( ( A .ih ( T ` A ) ) e. RR /\ 0 <_ ( A .ih ( T ` A ) ) ) /\ ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) ) -> 0 <_ ( B x. ( A .ih A ) ) ) |
| 32 |
16 22 31
|
prodge0ld |
|- ( ( ( ( A .ih ( T ` A ) ) e. RR /\ 0 <_ ( A .ih ( T ` A ) ) ) /\ ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) ) -> 0 <_ B ) |
| 33 |
16 32
|
jca |
|- ( ( ( ( A .ih ( T ` A ) ) e. RR /\ 0 <_ ( A .ih ( T ` A ) ) ) /\ ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) ) -> ( B e. RR /\ 0 <_ B ) ) |