Step |
Hyp |
Ref |
Expression |
1 |
|
elmsubrn.e |
|- E = ( mEx ` T ) |
2 |
|
elmsubrn.o |
|- O = ( mRSubst ` T ) |
3 |
|
elmsubrn.s |
|- S = ( mSubst ` T ) |
4 |
|
eqid |
|- ( mVR ` T ) = ( mVR ` T ) |
5 |
|
eqid |
|- ( mREx ` T ) = ( mREx ` T ) |
6 |
4 5 3 1 2
|
msubffval |
|- ( T e. _V -> S = ( g e. ( ( mREx ` T ) ^pm ( mVR ` T ) ) |-> ( e e. E |-> <. ( 1st ` e ) , ( ( O ` g ) ` ( 2nd ` e ) ) >. ) ) ) |
7 |
4 5 2
|
mrsubff |
|- ( T e. _V -> O : ( ( mREx ` T ) ^pm ( mVR ` T ) ) --> ( ( mREx ` T ) ^m ( mREx ` T ) ) ) |
8 |
7
|
ffnd |
|- ( T e. _V -> O Fn ( ( mREx ` T ) ^pm ( mVR ` T ) ) ) |
9 |
|
fnfvelrn |
|- ( ( O Fn ( ( mREx ` T ) ^pm ( mVR ` T ) ) /\ g e. ( ( mREx ` T ) ^pm ( mVR ` T ) ) ) -> ( O ` g ) e. ran O ) |
10 |
8 9
|
sylan |
|- ( ( T e. _V /\ g e. ( ( mREx ` T ) ^pm ( mVR ` T ) ) ) -> ( O ` g ) e. ran O ) |
11 |
7
|
feqmptd |
|- ( T e. _V -> O = ( g e. ( ( mREx ` T ) ^pm ( mVR ` T ) ) |-> ( O ` g ) ) ) |
12 |
|
eqidd |
|- ( T e. _V -> ( f e. ran O |-> ( e e. E |-> <. ( 1st ` e ) , ( f ` ( 2nd ` e ) ) >. ) ) = ( f e. ran O |-> ( e e. E |-> <. ( 1st ` e ) , ( f ` ( 2nd ` e ) ) >. ) ) ) |
13 |
|
fveq1 |
|- ( f = ( O ` g ) -> ( f ` ( 2nd ` e ) ) = ( ( O ` g ) ` ( 2nd ` e ) ) ) |
14 |
13
|
opeq2d |
|- ( f = ( O ` g ) -> <. ( 1st ` e ) , ( f ` ( 2nd ` e ) ) >. = <. ( 1st ` e ) , ( ( O ` g ) ` ( 2nd ` e ) ) >. ) |
15 |
14
|
mpteq2dv |
|- ( f = ( O ` g ) -> ( e e. E |-> <. ( 1st ` e ) , ( f ` ( 2nd ` e ) ) >. ) = ( e e. E |-> <. ( 1st ` e ) , ( ( O ` g ) ` ( 2nd ` e ) ) >. ) ) |
16 |
10 11 12 15
|
fmptco |
|- ( T e. _V -> ( ( f e. ran O |-> ( e e. E |-> <. ( 1st ` e ) , ( f ` ( 2nd ` e ) ) >. ) ) o. O ) = ( g e. ( ( mREx ` T ) ^pm ( mVR ` T ) ) |-> ( e e. E |-> <. ( 1st ` e ) , ( ( O ` g ) ` ( 2nd ` e ) ) >. ) ) ) |
17 |
6 16
|
eqtr4d |
|- ( T e. _V -> S = ( ( f e. ran O |-> ( e e. E |-> <. ( 1st ` e ) , ( f ` ( 2nd ` e ) ) >. ) ) o. O ) ) |
18 |
17
|
rneqd |
|- ( T e. _V -> ran S = ran ( ( f e. ran O |-> ( e e. E |-> <. ( 1st ` e ) , ( f ` ( 2nd ` e ) ) >. ) ) o. O ) ) |
19 |
|
rnco |
|- ran ( ( f e. ran O |-> ( e e. E |-> <. ( 1st ` e ) , ( f ` ( 2nd ` e ) ) >. ) ) o. O ) = ran ( ( f e. ran O |-> ( e e. E |-> <. ( 1st ` e ) , ( f ` ( 2nd ` e ) ) >. ) ) |` ran O ) |
20 |
|
ssid |
|- ran O C_ ran O |
21 |
|
resmpt |
|- ( ran O C_ ran O -> ( ( f e. ran O |-> ( e e. E |-> <. ( 1st ` e ) , ( f ` ( 2nd ` e ) ) >. ) ) |` ran O ) = ( f e. ran O |-> ( e e. E |-> <. ( 1st ` e ) , ( f ` ( 2nd ` e ) ) >. ) ) ) |
22 |
20 21
|
ax-mp |
|- ( ( f e. ran O |-> ( e e. E |-> <. ( 1st ` e ) , ( f ` ( 2nd ` e ) ) >. ) ) |` ran O ) = ( f e. ran O |-> ( e e. E |-> <. ( 1st ` e ) , ( f ` ( 2nd ` e ) ) >. ) ) |
23 |
22
|
rneqi |
|- ran ( ( f e. ran O |-> ( e e. E |-> <. ( 1st ` e ) , ( f ` ( 2nd ` e ) ) >. ) ) |` ran O ) = ran ( f e. ran O |-> ( e e. E |-> <. ( 1st ` e ) , ( f ` ( 2nd ` e ) ) >. ) ) |
24 |
19 23
|
eqtri |
|- ran ( ( f e. ran O |-> ( e e. E |-> <. ( 1st ` e ) , ( f ` ( 2nd ` e ) ) >. ) ) o. O ) = ran ( f e. ran O |-> ( e e. E |-> <. ( 1st ` e ) , ( f ` ( 2nd ` e ) ) >. ) ) |
25 |
18 24
|
eqtrdi |
|- ( T e. _V -> ran S = ran ( f e. ran O |-> ( e e. E |-> <. ( 1st ` e ) , ( f ` ( 2nd ` e ) ) >. ) ) ) |
26 |
|
mpt0 |
|- ( f e. (/) |-> ( e e. E |-> <. ( 1st ` e ) , ( f ` ( 2nd ` e ) ) >. ) ) = (/) |
27 |
26
|
eqcomi |
|- (/) = ( f e. (/) |-> ( e e. E |-> <. ( 1st ` e ) , ( f ` ( 2nd ` e ) ) >. ) ) |
28 |
|
fvprc |
|- ( -. T e. _V -> ( mSubst ` T ) = (/) ) |
29 |
3 28
|
syl5eq |
|- ( -. T e. _V -> S = (/) ) |
30 |
2
|
rnfvprc |
|- ( -. T e. _V -> ran O = (/) ) |
31 |
30
|
mpteq1d |
|- ( -. T e. _V -> ( f e. ran O |-> ( e e. E |-> <. ( 1st ` e ) , ( f ` ( 2nd ` e ) ) >. ) ) = ( f e. (/) |-> ( e e. E |-> <. ( 1st ` e ) , ( f ` ( 2nd ` e ) ) >. ) ) ) |
32 |
27 29 31
|
3eqtr4a |
|- ( -. T e. _V -> S = ( f e. ran O |-> ( e e. E |-> <. ( 1st ` e ) , ( f ` ( 2nd ` e ) ) >. ) ) ) |
33 |
32
|
rneqd |
|- ( -. T e. _V -> ran S = ran ( f e. ran O |-> ( e e. E |-> <. ( 1st ` e ) , ( f ` ( 2nd ` e ) ) >. ) ) ) |
34 |
25 33
|
pm2.61i |
|- ran S = ran ( f e. ran O |-> ( e e. E |-> <. ( 1st ` e ) , ( f ` ( 2nd ` e ) ) >. ) ) |