| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evthiccabs.a |
|- ( ph -> A e. RR ) |
| 2 |
|
evthiccabs.b |
|- ( ph -> B e. RR ) |
| 3 |
|
evthiccabs.aleb |
|- ( ph -> A <_ B ) |
| 4 |
|
evthiccabs.f |
|- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
| 5 |
|
ax-resscn |
|- RR C_ CC |
| 6 |
|
ssid |
|- CC C_ CC |
| 7 |
|
cncfss |
|- ( ( RR C_ CC /\ CC C_ CC ) -> ( ( A [,] B ) -cn-> RR ) C_ ( ( A [,] B ) -cn-> CC ) ) |
| 8 |
5 6 7
|
mp2an |
|- ( ( A [,] B ) -cn-> RR ) C_ ( ( A [,] B ) -cn-> CC ) |
| 9 |
8 4
|
sselid |
|- ( ph -> F e. ( ( A [,] B ) -cn-> CC ) ) |
| 10 |
|
abscncf |
|- abs e. ( CC -cn-> RR ) |
| 11 |
10
|
a1i |
|- ( ph -> abs e. ( CC -cn-> RR ) ) |
| 12 |
9 11
|
cncfco |
|- ( ph -> ( abs o. F ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 13 |
1 2 3 12
|
evthicc |
|- ( ph -> ( E. x e. ( A [,] B ) A. y e. ( A [,] B ) ( ( abs o. F ) ` y ) <_ ( ( abs o. F ) ` x ) /\ E. z e. ( A [,] B ) A. w e. ( A [,] B ) ( ( abs o. F ) ` z ) <_ ( ( abs o. F ) ` w ) ) ) |
| 14 |
13
|
simpld |
|- ( ph -> E. x e. ( A [,] B ) A. y e. ( A [,] B ) ( ( abs o. F ) ` y ) <_ ( ( abs o. F ) ` x ) ) |
| 15 |
|
cncff |
|- ( F e. ( ( A [,] B ) -cn-> RR ) -> F : ( A [,] B ) --> RR ) |
| 16 |
|
ffun |
|- ( F : ( A [,] B ) --> RR -> Fun F ) |
| 17 |
4 15 16
|
3syl |
|- ( ph -> Fun F ) |
| 18 |
17
|
adantr |
|- ( ( ph /\ y e. ( A [,] B ) ) -> Fun F ) |
| 19 |
|
simpr |
|- ( ( ph /\ y e. ( A [,] B ) ) -> y e. ( A [,] B ) ) |
| 20 |
|
fdm |
|- ( F : ( A [,] B ) --> RR -> dom F = ( A [,] B ) ) |
| 21 |
4 15 20
|
3syl |
|- ( ph -> dom F = ( A [,] B ) ) |
| 22 |
21
|
eqcomd |
|- ( ph -> ( A [,] B ) = dom F ) |
| 23 |
22
|
adantr |
|- ( ( ph /\ y e. ( A [,] B ) ) -> ( A [,] B ) = dom F ) |
| 24 |
19 23
|
eleqtrd |
|- ( ( ph /\ y e. ( A [,] B ) ) -> y e. dom F ) |
| 25 |
|
fvco |
|- ( ( Fun F /\ y e. dom F ) -> ( ( abs o. F ) ` y ) = ( abs ` ( F ` y ) ) ) |
| 26 |
18 24 25
|
syl2anc |
|- ( ( ph /\ y e. ( A [,] B ) ) -> ( ( abs o. F ) ` y ) = ( abs ` ( F ` y ) ) ) |
| 27 |
26
|
adantlr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ y e. ( A [,] B ) ) -> ( ( abs o. F ) ` y ) = ( abs ` ( F ` y ) ) ) |
| 28 |
17
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> Fun F ) |
| 29 |
|
simpr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x e. ( A [,] B ) ) |
| 30 |
22
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( A [,] B ) = dom F ) |
| 31 |
29 30
|
eleqtrd |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x e. dom F ) |
| 32 |
|
fvco |
|- ( ( Fun F /\ x e. dom F ) -> ( ( abs o. F ) ` x ) = ( abs ` ( F ` x ) ) ) |
| 33 |
28 31 32
|
syl2anc |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( ( abs o. F ) ` x ) = ( abs ` ( F ` x ) ) ) |
| 34 |
33
|
adantr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ y e. ( A [,] B ) ) -> ( ( abs o. F ) ` x ) = ( abs ` ( F ` x ) ) ) |
| 35 |
27 34
|
breq12d |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ y e. ( A [,] B ) ) -> ( ( ( abs o. F ) ` y ) <_ ( ( abs o. F ) ` x ) <-> ( abs ` ( F ` y ) ) <_ ( abs ` ( F ` x ) ) ) ) |
| 36 |
35
|
ralbidva |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( A. y e. ( A [,] B ) ( ( abs o. F ) ` y ) <_ ( ( abs o. F ) ` x ) <-> A. y e. ( A [,] B ) ( abs ` ( F ` y ) ) <_ ( abs ` ( F ` x ) ) ) ) |
| 37 |
36
|
rexbidva |
|- ( ph -> ( E. x e. ( A [,] B ) A. y e. ( A [,] B ) ( ( abs o. F ) ` y ) <_ ( ( abs o. F ) ` x ) <-> E. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( F ` y ) ) <_ ( abs ` ( F ` x ) ) ) ) |
| 38 |
14 37
|
mpbid |
|- ( ph -> E. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( F ` y ) ) <_ ( abs ` ( F ` x ) ) ) |
| 39 |
13
|
simprd |
|- ( ph -> E. z e. ( A [,] B ) A. w e. ( A [,] B ) ( ( abs o. F ) ` z ) <_ ( ( abs o. F ) ` w ) ) |
| 40 |
17
|
adantr |
|- ( ( ph /\ z e. ( A [,] B ) ) -> Fun F ) |
| 41 |
|
simpr |
|- ( ( ph /\ z e. ( A [,] B ) ) -> z e. ( A [,] B ) ) |
| 42 |
22
|
adantr |
|- ( ( ph /\ z e. ( A [,] B ) ) -> ( A [,] B ) = dom F ) |
| 43 |
41 42
|
eleqtrd |
|- ( ( ph /\ z e. ( A [,] B ) ) -> z e. dom F ) |
| 44 |
|
fvco |
|- ( ( Fun F /\ z e. dom F ) -> ( ( abs o. F ) ` z ) = ( abs ` ( F ` z ) ) ) |
| 45 |
40 43 44
|
syl2anc |
|- ( ( ph /\ z e. ( A [,] B ) ) -> ( ( abs o. F ) ` z ) = ( abs ` ( F ` z ) ) ) |
| 46 |
45
|
adantr |
|- ( ( ( ph /\ z e. ( A [,] B ) ) /\ w e. ( A [,] B ) ) -> ( ( abs o. F ) ` z ) = ( abs ` ( F ` z ) ) ) |
| 47 |
17
|
adantr |
|- ( ( ph /\ w e. ( A [,] B ) ) -> Fun F ) |
| 48 |
|
simpr |
|- ( ( ph /\ w e. ( A [,] B ) ) -> w e. ( A [,] B ) ) |
| 49 |
22
|
adantr |
|- ( ( ph /\ w e. ( A [,] B ) ) -> ( A [,] B ) = dom F ) |
| 50 |
48 49
|
eleqtrd |
|- ( ( ph /\ w e. ( A [,] B ) ) -> w e. dom F ) |
| 51 |
|
fvco |
|- ( ( Fun F /\ w e. dom F ) -> ( ( abs o. F ) ` w ) = ( abs ` ( F ` w ) ) ) |
| 52 |
47 50 51
|
syl2anc |
|- ( ( ph /\ w e. ( A [,] B ) ) -> ( ( abs o. F ) ` w ) = ( abs ` ( F ` w ) ) ) |
| 53 |
52
|
adantlr |
|- ( ( ( ph /\ z e. ( A [,] B ) ) /\ w e. ( A [,] B ) ) -> ( ( abs o. F ) ` w ) = ( abs ` ( F ` w ) ) ) |
| 54 |
46 53
|
breq12d |
|- ( ( ( ph /\ z e. ( A [,] B ) ) /\ w e. ( A [,] B ) ) -> ( ( ( abs o. F ) ` z ) <_ ( ( abs o. F ) ` w ) <-> ( abs ` ( F ` z ) ) <_ ( abs ` ( F ` w ) ) ) ) |
| 55 |
54
|
ralbidva |
|- ( ( ph /\ z e. ( A [,] B ) ) -> ( A. w e. ( A [,] B ) ( ( abs o. F ) ` z ) <_ ( ( abs o. F ) ` w ) <-> A. w e. ( A [,] B ) ( abs ` ( F ` z ) ) <_ ( abs ` ( F ` w ) ) ) ) |
| 56 |
55
|
rexbidva |
|- ( ph -> ( E. z e. ( A [,] B ) A. w e. ( A [,] B ) ( ( abs o. F ) ` z ) <_ ( ( abs o. F ) ` w ) <-> E. z e. ( A [,] B ) A. w e. ( A [,] B ) ( abs ` ( F ` z ) ) <_ ( abs ` ( F ` w ) ) ) ) |
| 57 |
39 56
|
mpbid |
|- ( ph -> E. z e. ( A [,] B ) A. w e. ( A [,] B ) ( abs ` ( F ` z ) ) <_ ( abs ` ( F ` w ) ) ) |
| 58 |
38 57
|
jca |
|- ( ph -> ( E. x e. ( A [,] B ) A. y e. ( A [,] B ) ( abs ` ( F ` y ) ) <_ ( abs ` ( F ` x ) ) /\ E. z e. ( A [,] B ) A. w e. ( A [,] B ) ( abs ` ( F ` z ) ) <_ ( abs ` ( F ` w ) ) ) ) |