| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evthiccabs.a |
|
| 2 |
|
evthiccabs.b |
|
| 3 |
|
evthiccabs.aleb |
|
| 4 |
|
evthiccabs.f |
|
| 5 |
|
ax-resscn |
|
| 6 |
|
ssid |
|
| 7 |
|
cncfss |
|
| 8 |
5 6 7
|
mp2an |
|
| 9 |
8 4
|
sselid |
|
| 10 |
|
abscncf |
|
| 11 |
10
|
a1i |
|
| 12 |
9 11
|
cncfco |
|
| 13 |
1 2 3 12
|
evthicc |
|
| 14 |
13
|
simpld |
|
| 15 |
|
cncff |
|
| 16 |
|
ffun |
|
| 17 |
4 15 16
|
3syl |
|
| 18 |
17
|
adantr |
|
| 19 |
|
simpr |
|
| 20 |
|
fdm |
|
| 21 |
4 15 20
|
3syl |
|
| 22 |
21
|
eqcomd |
|
| 23 |
22
|
adantr |
|
| 24 |
19 23
|
eleqtrd |
|
| 25 |
|
fvco |
|
| 26 |
18 24 25
|
syl2anc |
|
| 27 |
26
|
adantlr |
|
| 28 |
17
|
adantr |
|
| 29 |
|
simpr |
|
| 30 |
22
|
adantr |
|
| 31 |
29 30
|
eleqtrd |
|
| 32 |
|
fvco |
|
| 33 |
28 31 32
|
syl2anc |
|
| 34 |
33
|
adantr |
|
| 35 |
27 34
|
breq12d |
|
| 36 |
35
|
ralbidva |
|
| 37 |
36
|
rexbidva |
|
| 38 |
14 37
|
mpbid |
|
| 39 |
13
|
simprd |
|
| 40 |
17
|
adantr |
|
| 41 |
|
simpr |
|
| 42 |
22
|
adantr |
|
| 43 |
41 42
|
eleqtrd |
|
| 44 |
|
fvco |
|
| 45 |
40 43 44
|
syl2anc |
|
| 46 |
45
|
adantr |
|
| 47 |
17
|
adantr |
|
| 48 |
|
simpr |
|
| 49 |
22
|
adantr |
|
| 50 |
48 49
|
eleqtrd |
|
| 51 |
|
fvco |
|
| 52 |
47 50 51
|
syl2anc |
|
| 53 |
52
|
adantlr |
|
| 54 |
46 53
|
breq12d |
|
| 55 |
54
|
ralbidva |
|
| 56 |
55
|
rexbidva |
|
| 57 |
39 56
|
mpbid |
|
| 58 |
38 57
|
jca |
|