| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evthiccabs.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
evthiccabs.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
evthiccabs.aleb |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 4 |
|
evthiccabs.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 5 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 6 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 7 |
|
cncfss |
⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ⊆ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 8 |
5 6 7
|
mp2an |
⊢ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ⊆ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) |
| 9 |
8 4
|
sselid |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 10 |
|
abscncf |
⊢ abs ∈ ( ℂ –cn→ ℝ ) |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → abs ∈ ( ℂ –cn→ ℝ ) ) |
| 12 |
9 11
|
cncfco |
⊢ ( 𝜑 → ( abs ∘ 𝐹 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 13 |
1 2 3 12
|
evthicc |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) ∧ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑤 ) ) ) |
| 14 |
13
|
simpld |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) ) |
| 15 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 16 |
|
ffun |
⊢ ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ → Fun 𝐹 ) |
| 17 |
4 15 16
|
3syl |
⊢ ( 𝜑 → Fun 𝐹 ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → Fun 𝐹 ) |
| 19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 20 |
|
fdm |
⊢ ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ → dom 𝐹 = ( 𝐴 [,] 𝐵 ) ) |
| 21 |
4 15 20
|
3syl |
⊢ ( 𝜑 → dom 𝐹 = ( 𝐴 [,] 𝐵 ) ) |
| 22 |
21
|
eqcomd |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) = dom 𝐹 ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 [,] 𝐵 ) = dom 𝐹 ) |
| 24 |
19 23
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑦 ∈ dom 𝐹 ) |
| 25 |
|
fvco |
⊢ ( ( Fun 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) → ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) = ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
| 26 |
18 24 25
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) = ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
| 27 |
26
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) = ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
| 28 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → Fun 𝐹 ) |
| 29 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 30 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 [,] 𝐵 ) = dom 𝐹 ) |
| 31 |
29 30
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ dom 𝐹 ) |
| 32 |
|
fvco |
⊢ ( ( Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) = ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 33 |
28 31 32
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) = ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 34 |
33
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) = ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 35 |
27 34
|
breq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) ↔ ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 36 |
35
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 37 |
36
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 38 |
14 37
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 39 |
13
|
simprd |
⊢ ( 𝜑 → ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑤 ) ) |
| 40 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → Fun 𝐹 ) |
| 41 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 42 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 [,] 𝐵 ) = dom 𝐹 ) |
| 43 |
41 42
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑧 ∈ dom 𝐹 ) |
| 44 |
|
fvco |
⊢ ( ( Fun 𝐹 ∧ 𝑧 ∈ dom 𝐹 ) → ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) = ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
| 45 |
40 43 44
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) = ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
| 46 |
45
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) = ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
| 47 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → Fun 𝐹 ) |
| 48 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 49 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 [,] 𝐵 ) = dom 𝐹 ) |
| 50 |
48 49
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑤 ∈ dom 𝐹 ) |
| 51 |
|
fvco |
⊢ ( ( Fun 𝐹 ∧ 𝑤 ∈ dom 𝐹 ) → ( ( abs ∘ 𝐹 ) ‘ 𝑤 ) = ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ) |
| 52 |
47 50 51
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑤 ) = ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ) |
| 53 |
52
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑤 ) = ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ) |
| 54 |
46 53
|
breq12d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑤 ) ↔ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 55 |
54
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑤 ) ↔ ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 56 |
55
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑧 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑤 ) ↔ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 57 |
39 56
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ) |
| 58 |
38 57
|
jca |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∃ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑤 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ) ) |