Step |
Hyp |
Ref |
Expression |
1 |
|
flt4lem6.a |
|- ( ph -> A e. NN ) |
2 |
|
flt4lem6.b |
|- ( ph -> B e. NN ) |
3 |
|
flt4lem6.c |
|- ( ph -> C e. NN ) |
4 |
|
flt4lem6.1 |
|- ( ph -> ( ( A ^ 4 ) + ( B ^ 4 ) ) = ( C ^ 2 ) ) |
5 |
2
|
nnzd |
|- ( ph -> B e. ZZ ) |
6 |
|
divgcdnn |
|- ( ( A e. NN /\ B e. ZZ ) -> ( A / ( A gcd B ) ) e. NN ) |
7 |
1 5 6
|
syl2anc |
|- ( ph -> ( A / ( A gcd B ) ) e. NN ) |
8 |
1
|
nnzd |
|- ( ph -> A e. ZZ ) |
9 |
|
divgcdnnr |
|- ( ( B e. NN /\ A e. ZZ ) -> ( B / ( A gcd B ) ) e. NN ) |
10 |
2 8 9
|
syl2anc |
|- ( ph -> ( B / ( A gcd B ) ) e. NN ) |
11 |
|
gcdnncl |
|- ( ( A e. NN /\ B e. NN ) -> ( A gcd B ) e. NN ) |
12 |
1 2 11
|
syl2anc |
|- ( ph -> ( A gcd B ) e. NN ) |
13 |
12
|
nncnd |
|- ( ph -> ( A gcd B ) e. CC ) |
14 |
13
|
flt4lem |
|- ( ph -> ( ( A gcd B ) ^ 4 ) = ( ( ( A gcd B ) ^ 2 ) ^ 2 ) ) |
15 |
4 14
|
oveq12d |
|- ( ph -> ( ( ( A ^ 4 ) + ( B ^ 4 ) ) / ( ( A gcd B ) ^ 4 ) ) = ( ( C ^ 2 ) / ( ( ( A gcd B ) ^ 2 ) ^ 2 ) ) ) |
16 |
1
|
nncnd |
|- ( ph -> A e. CC ) |
17 |
12
|
nnne0d |
|- ( ph -> ( A gcd B ) =/= 0 ) |
18 |
|
4nn0 |
|- 4 e. NN0 |
19 |
18
|
a1i |
|- ( ph -> 4 e. NN0 ) |
20 |
16 13 17 19
|
expdivd |
|- ( ph -> ( ( A / ( A gcd B ) ) ^ 4 ) = ( ( A ^ 4 ) / ( ( A gcd B ) ^ 4 ) ) ) |
21 |
2
|
nncnd |
|- ( ph -> B e. CC ) |
22 |
21 13 17 19
|
expdivd |
|- ( ph -> ( ( B / ( A gcd B ) ) ^ 4 ) = ( ( B ^ 4 ) / ( ( A gcd B ) ^ 4 ) ) ) |
23 |
20 22
|
oveq12d |
|- ( ph -> ( ( ( A / ( A gcd B ) ) ^ 4 ) + ( ( B / ( A gcd B ) ) ^ 4 ) ) = ( ( ( A ^ 4 ) / ( ( A gcd B ) ^ 4 ) ) + ( ( B ^ 4 ) / ( ( A gcd B ) ^ 4 ) ) ) ) |
24 |
16 19
|
expcld |
|- ( ph -> ( A ^ 4 ) e. CC ) |
25 |
21 19
|
expcld |
|- ( ph -> ( B ^ 4 ) e. CC ) |
26 |
13 19
|
expcld |
|- ( ph -> ( ( A gcd B ) ^ 4 ) e. CC ) |
27 |
12 19
|
nnexpcld |
|- ( ph -> ( ( A gcd B ) ^ 4 ) e. NN ) |
28 |
27
|
nnne0d |
|- ( ph -> ( ( A gcd B ) ^ 4 ) =/= 0 ) |
29 |
24 25 26 28
|
divdird |
|- ( ph -> ( ( ( A ^ 4 ) + ( B ^ 4 ) ) / ( ( A gcd B ) ^ 4 ) ) = ( ( ( A ^ 4 ) / ( ( A gcd B ) ^ 4 ) ) + ( ( B ^ 4 ) / ( ( A gcd B ) ^ 4 ) ) ) ) |
30 |
23 29
|
eqtr4d |
|- ( ph -> ( ( ( A / ( A gcd B ) ) ^ 4 ) + ( ( B / ( A gcd B ) ) ^ 4 ) ) = ( ( ( A ^ 4 ) + ( B ^ 4 ) ) / ( ( A gcd B ) ^ 4 ) ) ) |
31 |
3
|
nncnd |
|- ( ph -> C e. CC ) |
32 |
12
|
nnsqcld |
|- ( ph -> ( ( A gcd B ) ^ 2 ) e. NN ) |
33 |
32
|
nncnd |
|- ( ph -> ( ( A gcd B ) ^ 2 ) e. CC ) |
34 |
32
|
nnne0d |
|- ( ph -> ( ( A gcd B ) ^ 2 ) =/= 0 ) |
35 |
31 33 34
|
sqdivd |
|- ( ph -> ( ( C / ( ( A gcd B ) ^ 2 ) ) ^ 2 ) = ( ( C ^ 2 ) / ( ( ( A gcd B ) ^ 2 ) ^ 2 ) ) ) |
36 |
15 30 35
|
3eqtr4d |
|- ( ph -> ( ( ( A / ( A gcd B ) ) ^ 4 ) + ( ( B / ( A gcd B ) ) ^ 4 ) ) = ( ( C / ( ( A gcd B ) ^ 2 ) ) ^ 2 ) ) |
37 |
7 19
|
nnexpcld |
|- ( ph -> ( ( A / ( A gcd B ) ) ^ 4 ) e. NN ) |
38 |
10 19
|
nnexpcld |
|- ( ph -> ( ( B / ( A gcd B ) ) ^ 4 ) e. NN ) |
39 |
37 38
|
nnaddcld |
|- ( ph -> ( ( ( A / ( A gcd B ) ) ^ 4 ) + ( ( B / ( A gcd B ) ) ^ 4 ) ) e. NN ) |
40 |
39
|
nnzd |
|- ( ph -> ( ( ( A / ( A gcd B ) ) ^ 4 ) + ( ( B / ( A gcd B ) ) ^ 4 ) ) e. ZZ ) |
41 |
36 40
|
eqeltrrd |
|- ( ph -> ( ( C / ( ( A gcd B ) ^ 2 ) ) ^ 2 ) e. ZZ ) |
42 |
3
|
nnzd |
|- ( ph -> C e. ZZ ) |
43 |
|
znq |
|- ( ( C e. ZZ /\ ( ( A gcd B ) ^ 2 ) e. NN ) -> ( C / ( ( A gcd B ) ^ 2 ) ) e. QQ ) |
44 |
42 32 43
|
syl2anc |
|- ( ph -> ( C / ( ( A gcd B ) ^ 2 ) ) e. QQ ) |
45 |
3
|
nnred |
|- ( ph -> C e. RR ) |
46 |
32
|
nnred |
|- ( ph -> ( ( A gcd B ) ^ 2 ) e. RR ) |
47 |
3
|
nngt0d |
|- ( ph -> 0 < C ) |
48 |
32
|
nngt0d |
|- ( ph -> 0 < ( ( A gcd B ) ^ 2 ) ) |
49 |
45 46 47 48
|
divgt0d |
|- ( ph -> 0 < ( C / ( ( A gcd B ) ^ 2 ) ) ) |
50 |
41 44 49
|
posqsqznn |
|- ( ph -> ( C / ( ( A gcd B ) ^ 2 ) ) e. NN ) |
51 |
7 10 50
|
3jca |
|- ( ph -> ( ( A / ( A gcd B ) ) e. NN /\ ( B / ( A gcd B ) ) e. NN /\ ( C / ( ( A gcd B ) ^ 2 ) ) e. NN ) ) |
52 |
51 36
|
jca |
|- ( ph -> ( ( ( A / ( A gcd B ) ) e. NN /\ ( B / ( A gcd B ) ) e. NN /\ ( C / ( ( A gcd B ) ^ 2 ) ) e. NN ) /\ ( ( ( A / ( A gcd B ) ) ^ 4 ) + ( ( B / ( A gcd B ) ) ^ 4 ) ) = ( ( C / ( ( A gcd B ) ^ 2 ) ) ^ 2 ) ) ) |