Step |
Hyp |
Ref |
Expression |
1 |
|
flt4lem6.a |
|
2 |
|
flt4lem6.b |
|
3 |
|
flt4lem6.c |
|
4 |
|
flt4lem6.1 |
|
5 |
2
|
nnzd |
|
6 |
|
divgcdnn |
|
7 |
1 5 6
|
syl2anc |
|
8 |
1
|
nnzd |
|
9 |
|
divgcdnnr |
|
10 |
2 8 9
|
syl2anc |
|
11 |
|
gcdnncl |
|
12 |
1 2 11
|
syl2anc |
|
13 |
12
|
nncnd |
|
14 |
13
|
flt4lem |
|
15 |
4 14
|
oveq12d |
|
16 |
1
|
nncnd |
|
17 |
12
|
nnne0d |
|
18 |
|
4nn0 |
|
19 |
18
|
a1i |
|
20 |
16 13 17 19
|
expdivd |
|
21 |
2
|
nncnd |
|
22 |
21 13 17 19
|
expdivd |
|
23 |
20 22
|
oveq12d |
|
24 |
16 19
|
expcld |
|
25 |
21 19
|
expcld |
|
26 |
13 19
|
expcld |
|
27 |
12 19
|
nnexpcld |
|
28 |
27
|
nnne0d |
|
29 |
24 25 26 28
|
divdird |
|
30 |
23 29
|
eqtr4d |
|
31 |
3
|
nncnd |
|
32 |
12
|
nnsqcld |
|
33 |
32
|
nncnd |
|
34 |
32
|
nnne0d |
|
35 |
31 33 34
|
sqdivd |
|
36 |
15 30 35
|
3eqtr4d |
|
37 |
7 19
|
nnexpcld |
|
38 |
10 19
|
nnexpcld |
|
39 |
37 38
|
nnaddcld |
|
40 |
39
|
nnzd |
|
41 |
36 40
|
eqeltrrd |
|
42 |
3
|
nnzd |
|
43 |
|
znq |
|
44 |
42 32 43
|
syl2anc |
|
45 |
3
|
nnred |
|
46 |
32
|
nnred |
|
47 |
3
|
nngt0d |
|
48 |
32
|
nngt0d |
|
49 |
45 46 47 48
|
divgt0d |
|
50 |
41 44 49
|
posqsqznn |
|
51 |
7 10 50
|
3jca |
|
52 |
51 36
|
jca |
|