| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flt4lem6.a |
|
| 2 |
|
flt4lem6.b |
|
| 3 |
|
flt4lem6.c |
|
| 4 |
|
flt4lem6.1 |
|
| 5 |
2
|
nnzd |
|
| 6 |
|
divgcdnn |
|
| 7 |
1 5 6
|
syl2anc |
|
| 8 |
1
|
nnzd |
|
| 9 |
|
divgcdnnr |
|
| 10 |
2 8 9
|
syl2anc |
|
| 11 |
|
gcdnncl |
|
| 12 |
1 2 11
|
syl2anc |
|
| 13 |
12
|
nncnd |
|
| 14 |
13
|
flt4lem |
|
| 15 |
4 14
|
oveq12d |
|
| 16 |
1
|
nncnd |
|
| 17 |
12
|
nnne0d |
|
| 18 |
|
4nn0 |
|
| 19 |
18
|
a1i |
|
| 20 |
16 13 17 19
|
expdivd |
|
| 21 |
2
|
nncnd |
|
| 22 |
21 13 17 19
|
expdivd |
|
| 23 |
20 22
|
oveq12d |
|
| 24 |
16 19
|
expcld |
|
| 25 |
21 19
|
expcld |
|
| 26 |
13 19
|
expcld |
|
| 27 |
12 19
|
nnexpcld |
|
| 28 |
27
|
nnne0d |
|
| 29 |
24 25 26 28
|
divdird |
|
| 30 |
23 29
|
eqtr4d |
|
| 31 |
3
|
nncnd |
|
| 32 |
12
|
nnsqcld |
|
| 33 |
32
|
nncnd |
|
| 34 |
32
|
nnne0d |
|
| 35 |
31 33 34
|
sqdivd |
|
| 36 |
15 30 35
|
3eqtr4d |
|
| 37 |
7 19
|
nnexpcld |
|
| 38 |
10 19
|
nnexpcld |
|
| 39 |
37 38
|
nnaddcld |
|
| 40 |
39
|
nnzd |
|
| 41 |
36 40
|
eqeltrrd |
|
| 42 |
3
|
nnzd |
|
| 43 |
|
znq |
|
| 44 |
42 32 43
|
syl2anc |
|
| 45 |
3
|
nnred |
|
| 46 |
32
|
nnred |
|
| 47 |
3
|
nngt0d |
|
| 48 |
32
|
nngt0d |
|
| 49 |
45 46 47 48
|
divgt0d |
|
| 50 |
41 44 49
|
posqsqznn |
|
| 51 |
7 10 50
|
3jca |
|
| 52 |
51 36
|
jca |
|