Metamath Proof Explorer


Theorem flt4lem6

Description: Remove shared factors in a solution to A ^ 4 + B ^ 4 = C ^ 2 . (Contributed by SN, 24-Jul-2024)

Ref Expression
Hypotheses flt4lem6.a φ A
flt4lem6.b φ B
flt4lem6.c φ C
flt4lem6.1 φ A 4 + B 4 = C 2
Assertion flt4lem6 φ A A gcd B B A gcd B C A gcd B 2 A A gcd B 4 + B A gcd B 4 = C A gcd B 2 2

Proof

Step Hyp Ref Expression
1 flt4lem6.a φ A
2 flt4lem6.b φ B
3 flt4lem6.c φ C
4 flt4lem6.1 φ A 4 + B 4 = C 2
5 2 nnzd φ B
6 divgcdnn A B A A gcd B
7 1 5 6 syl2anc φ A A gcd B
8 1 nnzd φ A
9 divgcdnnr B A B A gcd B
10 2 8 9 syl2anc φ B A gcd B
11 gcdnncl A B A gcd B
12 1 2 11 syl2anc φ A gcd B
13 12 nncnd φ A gcd B
14 13 flt4lem φ A gcd B 4 = A gcd B 2 2
15 4 14 oveq12d φ A 4 + B 4 A gcd B 4 = C 2 A gcd B 2 2
16 1 nncnd φ A
17 12 nnne0d φ A gcd B 0
18 4nn0 4 0
19 18 a1i φ 4 0
20 16 13 17 19 expdivd φ A A gcd B 4 = A 4 A gcd B 4
21 2 nncnd φ B
22 21 13 17 19 expdivd φ B A gcd B 4 = B 4 A gcd B 4
23 20 22 oveq12d φ A A gcd B 4 + B A gcd B 4 = A 4 A gcd B 4 + B 4 A gcd B 4
24 16 19 expcld φ A 4
25 21 19 expcld φ B 4
26 13 19 expcld φ A gcd B 4
27 12 19 nnexpcld φ A gcd B 4
28 27 nnne0d φ A gcd B 4 0
29 24 25 26 28 divdird φ A 4 + B 4 A gcd B 4 = A 4 A gcd B 4 + B 4 A gcd B 4
30 23 29 eqtr4d φ A A gcd B 4 + B A gcd B 4 = A 4 + B 4 A gcd B 4
31 3 nncnd φ C
32 12 nnsqcld φ A gcd B 2
33 32 nncnd φ A gcd B 2
34 32 nnne0d φ A gcd B 2 0
35 31 33 34 sqdivd φ C A gcd B 2 2 = C 2 A gcd B 2 2
36 15 30 35 3eqtr4d φ A A gcd B 4 + B A gcd B 4 = C A gcd B 2 2
37 7 19 nnexpcld φ A A gcd B 4
38 10 19 nnexpcld φ B A gcd B 4
39 37 38 nnaddcld φ A A gcd B 4 + B A gcd B 4
40 39 nnzd φ A A gcd B 4 + B A gcd B 4
41 36 40 eqeltrrd φ C A gcd B 2 2
42 3 nnzd φ C
43 znq C A gcd B 2 C A gcd B 2
44 42 32 43 syl2anc φ C A gcd B 2
45 3 nnred φ C
46 32 nnred φ A gcd B 2
47 3 nngt0d φ 0 < C
48 32 nngt0d φ 0 < A gcd B 2
49 45 46 47 48 divgt0d φ 0 < C A gcd B 2
50 41 44 49 posqsqznn φ C A gcd B 2
51 7 10 50 3jca φ A A gcd B B A gcd B C A gcd B 2
52 51 36 jca φ A A gcd B B A gcd B C A gcd B 2 A A gcd B 4 + B A gcd B 4 = C A gcd B 2 2