Metamath Proof Explorer


Theorem flt4lem7

Description: Convert flt4lem5f into a convenient form for nna4b4nsq . TODO-SN: The change to ( A gcd B ) = 1 points at some inefficiency in the lemmas. (Contributed by SN, 25-Aug-2024)

Ref Expression
Hypotheses flt4lem7.a φ A
flt4lem7.b φ B
flt4lem7.c φ C
flt4lem7.1 φ ¬ 2 A
flt4lem7.2 φ A gcd B = 1
flt4lem7.3 φ A 4 + B 4 = C 2
Assertion flt4lem7 φ l g h ¬ 2 g g gcd h = 1 g 4 + h 4 = l 2 l < C

Proof

Step Hyp Ref Expression
1 flt4lem7.a φ A
2 flt4lem7.b φ B
3 flt4lem7.c φ C
4 flt4lem7.1 φ ¬ 2 A
5 flt4lem7.2 φ A gcd B = 1
6 flt4lem7.3 φ A 4 + B 4 = C 2
7 breq1 l = C + B 2 + C B 2 2 gcd B 2 l < C C + B 2 + C B 2 2 gcd B 2 < C
8 oveq1 l = C + B 2 + C B 2 2 gcd B 2 l 2 = C + B 2 + C B 2 2 gcd B 2 2
9 8 eqeq2d l = C + B 2 + C B 2 2 gcd B 2 m 4 + n 4 = l 2 m 4 + n 4 = C + B 2 + C B 2 2 gcd B 2 2
10 9 anbi2d l = C + B 2 + C B 2 2 gcd B 2 m gcd n = 1 m 4 + n 4 = l 2 m gcd n = 1 m 4 + n 4 = C + B 2 + C B 2 2 gcd B 2 2
11 10 2rexbidv l = C + B 2 + C B 2 2 gcd B 2 m n m gcd n = 1 m 4 + n 4 = l 2 m n m gcd n = 1 m 4 + n 4 = C + B 2 + C B 2 2 gcd B 2 2
12 7 11 anbi12d l = C + B 2 + C B 2 2 gcd B 2 l < C m n m gcd n = 1 m 4 + n 4 = l 2 C + B 2 + C B 2 2 gcd B 2 < C m n m gcd n = 1 m 4 + n 4 = C + B 2 + C B 2 2 gcd B 2 2
13 eqid C + B 2 + C B 2 2 = C + B 2 + C B 2 2
14 eqid C + B 2 C B 2 2 = C + B 2 C B 2 2
15 eqid C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 = C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2
16 eqid C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 = C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2
17 1 nnsqcld φ A 2
18 2 nnsqcld φ B 2
19 2nn0 2 0
20 19 a1i φ 2 0
21 1 nncnd φ A
22 21 flt4lem φ A 4 = A 2 2
23 2 nncnd φ B
24 23 flt4lem φ B 4 = B 2 2
25 22 24 oveq12d φ A 4 + B 4 = A 2 2 + B 2 2
26 25 6 eqtr3d φ A 2 2 + B 2 2 = C 2
27 2nn 2
28 27 a1i φ 2
29 rppwr A B 2 A gcd B = 1 A 2 gcd B 2 = 1
30 1 2 28 29 syl3anc φ A gcd B = 1 A 2 gcd B 2 = 1
31 5 30 mpd φ A 2 gcd B 2 = 1
32 17 18 3 20 26 31 fltaccoprm φ A 2 gcd C = 1
33 1 nnzd φ A
34 3 nnzd φ C
35 rpexp A C 2 A 2 gcd C = 1 A gcd C = 1
36 33 34 28 35 syl3anc φ A 2 gcd C = 1 A gcd C = 1
37 32 36 mpbid φ A gcd C = 1
38 13 14 15 16 1 2 3 4 37 6 flt4lem5e φ C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 = 1 C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd C + B 2 + C B 2 2 = 1 C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd C + B 2 + C B 2 2 = 1 C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 C + B 2 + C B 2 2 C + B 2 + C B 2 2 C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 = B 2 2 B 2
39 38 simp2d φ C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 C + B 2 + C B 2 2
40 39 simp3d φ C + B 2 + C B 2 2
41 38 simp3d φ C + B 2 + C B 2 2 C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 = B 2 2 B 2
42 41 simprd φ B 2
43 gcdnncl C + B 2 + C B 2 2 B 2 C + B 2 + C B 2 2 gcd B 2
44 40 42 43 syl2anc φ C + B 2 + C B 2 2 gcd B 2
45 44 nnred φ C + B 2 + C B 2 2 gcd B 2
46 42 nnred φ B 2
47 3 nnred φ C
48 40 nnzd φ C + B 2 + C B 2 2
49 48 42 gcdle2d φ C + B 2 + C B 2 2 gcd B 2 B 2
50 2 nnred φ B
51 2 nnrpd φ B +
52 rphalflt B + B 2 < B
53 51 52 syl φ B 2 < B
54 18 nnred φ B 2
55 4nn0 4 0
56 55 a1i φ 4 0
57 2 56 nnexpcld φ B 4
58 57 nnred φ B 4
59 3 nnsqcld φ C 2
60 59 nnred φ C 2
61 2lt4 2 < 4
62 2z 2
63 62 a1i φ 2
64 4z 4
65 64 a1i φ 4
66 1red φ 1
67 2re 2
68 67 a1i φ 2
69 1lt2 1 < 2
70 69 a1i φ 1 < 2
71 2t1e2 2 1 = 2
72 42 nnge1d φ 1 B 2
73 2rp 2 +
74 73 a1i φ 2 +
75 66 50 74 lemuldiv2d φ 2 1 B 1 B 2
76 72 75 mpbird φ 2 1 B
77 71 76 eqbrtrrid φ 2 B
78 66 68 50 70 77 ltletrd φ 1 < B
79 50 63 65 78 ltexp2d φ 2 < 4 B 2 < B 4
80 61 79 mpbii φ B 2 < B 4
81 1 56 nnexpcld φ A 4
82 81 nngt0d φ 0 < A 4
83 81 nnred φ A 4
84 83 58 ltaddpos2d φ 0 < A 4 B 4 < A 4 + B 4
85 82 84 mpbid φ B 4 < A 4 + B 4
86 85 6 breqtrd φ B 4 < C 2
87 54 58 60 80 86 lttrd φ B 2 < C 2
88 3 nnrpd φ C +
89 51 88 28 ltexp1d φ B < C B 2 < C 2
90 87 89 mpbird φ B < C
91 46 50 47 53 90 lttrd φ B 2 < C
92 45 46 47 49 91 lelttrd φ C + B 2 + C B 2 2 gcd B 2 < C
93 oveq1 m = C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 m gcd n = C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 gcd n
94 93 eqeq1d m = C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 m gcd n = 1 C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 gcd n = 1
95 oveq1 m = C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 m 4 = C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 4
96 95 oveq1d m = C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 m 4 + n 4 = C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 4 + n 4
97 96 eqeq1d m = C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 m 4 + n 4 = C + B 2 + C B 2 2 gcd B 2 2 C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 4 + n 4 = C + B 2 + C B 2 2 gcd B 2 2
98 94 97 anbi12d m = C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 m gcd n = 1 m 4 + n 4 = C + B 2 + C B 2 2 gcd B 2 2 C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 gcd n = 1 C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 4 + n 4 = C + B 2 + C B 2 2 gcd B 2 2
99 oveq2 n = C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 gcd n = C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 gcd C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2
100 99 eqeq1d n = C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 gcd n = 1 C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 gcd C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 = 1
101 oveq1 n = C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 n 4 = C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 4
102 101 oveq2d n = C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 4 + n 4 = C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 4 + C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 4
103 102 eqeq1d n = C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 4 + n 4 = C + B 2 + C B 2 2 gcd B 2 2 C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 4 + C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 4 = C + B 2 + C B 2 2 gcd B 2 2
104 100 103 anbi12d n = C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 gcd n = 1 C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 4 + n 4 = C + B 2 + C B 2 2 gcd B 2 2 C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 gcd C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 = 1 C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 4 + C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 4 = C + B 2 + C B 2 2 gcd B 2 2
105 39 simp1d φ C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2
106 gcdnncl C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 B 2 C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2
107 105 42 106 syl2anc φ C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2
108 39 simp2d φ C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2
109 gcdnncl C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 B 2 C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2
110 108 42 109 syl2anc φ C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2
111 105 nnzd φ C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2
112 42 nnzd φ B 2
113 110 nnzd φ C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2
114 gcdass C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 B 2 C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 gcd C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 = C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 gcd C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2
115 111 112 113 114 syl3anc φ C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 gcd C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 = C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 gcd C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2
116 108 nnzd φ C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2
117 gcdass B 2 B 2 C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 B 2 gcd B 2 gcd C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 = B 2 gcd B 2 gcd C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2
118 112 112 116 117 syl3anc φ B 2 gcd B 2 gcd C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 = B 2 gcd B 2 gcd C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2
119 42 nnnn0d φ B 2 0
120 gcdnn0id B 2 0 B 2 gcd B 2 = B 2
121 119 120 syl φ B 2 gcd B 2 = B 2
122 121 oveq1d φ B 2 gcd B 2 gcd C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 = B 2 gcd C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2
123 112 116 gcdcomd φ B 2 gcd C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 = C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2
124 122 123 eqtr2d φ C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 = B 2 gcd B 2 gcd C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2
125 116 112 gcdcomd φ C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 = B 2 gcd C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2
126 125 oveq2d φ B 2 gcd C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 = B 2 gcd B 2 gcd C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2
127 118 124 126 3eqtr4rd φ B 2 gcd C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 = C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2
128 127 oveq2d φ C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 gcd C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 = C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2
129 38 simp1d φ C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 = 1 C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd C + B 2 + C B 2 2 = 1 C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd C + B 2 + C B 2 2 = 1
130 129 simp1d φ C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 = 1
131 130 oveq1d φ C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 = 1 gcd B 2
132 gcdass C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 B 2 C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 = C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2
133 111 116 112 132 syl3anc φ C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 = C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2
134 1gcd B 2 1 gcd B 2 = 1
135 112 134 syl φ 1 gcd B 2 = 1
136 131 133 135 3eqtr3d φ C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 = 1
137 115 128 136 3eqtrd φ C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 gcd C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 = 1
138 13 14 15 16 1 2 3 4 37 6 flt4lem5f φ C + B 2 + C B 2 2 gcd B 2 2 = C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 4 + C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 4
139 138 eqcomd φ C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 4 + C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 4 = C + B 2 + C B 2 2 gcd B 2 2
140 137 139 jca φ C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 gcd C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 = 1 C + B 2 + C B 2 2 + C + B 2 C B 2 2 + C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 4 + C + B 2 + C B 2 2 + C + B 2 C B 2 2 C + B 2 + C B 2 2 C + B 2 C B 2 2 2 gcd B 2 4 = C + B 2 + C B 2 2 gcd B 2 2
141 98 104 107 110 140 2rspcedvdw φ m n m gcd n = 1 m 4 + n 4 = C + B 2 + C B 2 2 gcd B 2 2
142 92 141 jca φ C + B 2 + C B 2 2 gcd B 2 < C m n m gcd n = 1 m 4 + n 4 = C + B 2 + C B 2 2 gcd B 2 2
143 12 44 142 rspcedvdw φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2
144 breq2 g = m 2 g 2 m
145 144 notbid g = m ¬ 2 g ¬ 2 m
146 oveq1 g = m g gcd h = m gcd h
147 146 eqeq1d g = m g gcd h = 1 m gcd h = 1
148 oveq1 g = m g 4 = m 4
149 148 oveq1d g = m g 4 + h 4 = m 4 + h 4
150 149 eqeq1d g = m g 4 + h 4 = l 2 m 4 + h 4 = l 2
151 147 150 anbi12d g = m g gcd h = 1 g 4 + h 4 = l 2 m gcd h = 1 m 4 + h 4 = l 2
152 145 151 anbi12d g = m ¬ 2 g g gcd h = 1 g 4 + h 4 = l 2 ¬ 2 m m gcd h = 1 m 4 + h 4 = l 2
153 oveq2 h = n m gcd h = m gcd n
154 153 eqeq1d h = n m gcd h = 1 m gcd n = 1
155 oveq1 h = n h 4 = n 4
156 155 oveq2d h = n m 4 + h 4 = m 4 + n 4
157 156 eqeq1d h = n m 4 + h 4 = l 2 m 4 + n 4 = l 2
158 154 157 anbi12d h = n m gcd h = 1 m 4 + h 4 = l 2 m gcd n = 1 m 4 + n 4 = l 2
159 158 anbi2d h = n ¬ 2 m m gcd h = 1 m 4 + h 4 = l 2 ¬ 2 m m gcd n = 1 m 4 + n 4 = l 2
160 simplrl φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 m
161 160 adantr φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 ¬ 2 m m
162 simprr φ l l < C m n n
163 162 ad2antrr φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 ¬ 2 m n
164 simpr φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 ¬ 2 m ¬ 2 m
165 simplr φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 ¬ 2 m m gcd n = 1 m 4 + n 4 = l 2
166 164 165 jca φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 ¬ 2 m ¬ 2 m m gcd n = 1 m 4 + n 4 = l 2
167 152 159 161 163 166 2rspcedvdw φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 ¬ 2 m g h ¬ 2 g g gcd h = 1 g 4 + h 4 = l 2
168 simp-4r φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 ¬ 2 m l < C
169 167 168 jca φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 ¬ 2 m g h ¬ 2 g g gcd h = 1 g 4 + h 4 = l 2 l < C
170 breq2 g = n 2 g 2 n
171 170 notbid g = n ¬ 2 g ¬ 2 n
172 oveq1 g = n g gcd h = n gcd h
173 172 eqeq1d g = n g gcd h = 1 n gcd h = 1
174 oveq1 g = n g 4 = n 4
175 174 oveq1d g = n g 4 + h 4 = n 4 + h 4
176 175 eqeq1d g = n g 4 + h 4 = l 2 n 4 + h 4 = l 2
177 173 176 anbi12d g = n g gcd h = 1 g 4 + h 4 = l 2 n gcd h = 1 n 4 + h 4 = l 2
178 171 177 anbi12d g = n ¬ 2 g g gcd h = 1 g 4 + h 4 = l 2 ¬ 2 n n gcd h = 1 n 4 + h 4 = l 2
179 oveq2 h = m n gcd h = n gcd m
180 179 eqeq1d h = m n gcd h = 1 n gcd m = 1
181 oveq1 h = m h 4 = m 4
182 181 oveq2d h = m n 4 + h 4 = n 4 + m 4
183 182 eqeq1d h = m n 4 + h 4 = l 2 n 4 + m 4 = l 2
184 180 183 anbi12d h = m n gcd h = 1 n 4 + h 4 = l 2 n gcd m = 1 n 4 + m 4 = l 2
185 184 anbi2d h = m ¬ 2 n n gcd h = 1 n 4 + h 4 = l 2 ¬ 2 n n gcd m = 1 n 4 + m 4 = l 2
186 162 ad2antrr φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 ¬ 2 n n
187 160 adantr φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 ¬ 2 n m
188 simpr φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 ¬ 2 n ¬ 2 n
189 186 nnzd φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 ¬ 2 n n
190 187 nnzd φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 ¬ 2 n m
191 189 190 gcdcomd φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 ¬ 2 n n gcd m = m gcd n
192 simplrl φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 ¬ 2 n m gcd n = 1
193 191 192 eqtrd φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 ¬ 2 n n gcd m = 1
194 55 a1i φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 ¬ 2 n 4 0
195 186 194 nnexpcld φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 ¬ 2 n n 4
196 195 nncnd φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 ¬ 2 n n 4
197 187 194 nnexpcld φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 ¬ 2 n m 4
198 197 nncnd φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 ¬ 2 n m 4
199 196 198 addcomd φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 ¬ 2 n n 4 + m 4 = m 4 + n 4
200 simplrr φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 ¬ 2 n m 4 + n 4 = l 2
201 199 200 eqtrd φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 ¬ 2 n n 4 + m 4 = l 2
202 188 193 201 jca32 φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 ¬ 2 n ¬ 2 n n gcd m = 1 n 4 + m 4 = l 2
203 178 185 186 187 202 2rspcedvdw φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 ¬ 2 n g h ¬ 2 g g gcd h = 1 g 4 + h 4 = l 2
204 simp-4r φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 ¬ 2 n l < C
205 203 204 jca φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 ¬ 2 n g h ¬ 2 g g gcd h = 1 g 4 + h 4 = l 2 l < C
206 simprl φ l l < C m n m
207 206 ad2antrr φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 2 m m
208 207 nnsqcld φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 2 m m 2
209 162 ad2antrr φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 2 m n
210 209 nnsqcld φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 2 m n 2
211 simp-5r φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 2 m l
212 160 nnzd φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 m
213 27 a1i φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 2
214 dvdsexp2im 2 m 2 2 m 2 m 2
215 62 212 213 214 mp3an2i φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 2 m 2 m 2
216 215 imp φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 2 m 2 m 2
217 19 a1i φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 2 m 2 0
218 207 nncnd φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 2 m m
219 218 flt4lem φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 2 m m 4 = m 2 2
220 209 nncnd φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 2 m n
221 220 flt4lem φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 2 m n 4 = n 2 2
222 219 221 oveq12d φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 2 m m 4 + n 4 = m 2 2 + n 2 2
223 simplrr φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 2 m m 4 + n 4 = l 2
224 222 223 eqtr3d φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 2 m m 2 2 + n 2 2 = l 2
225 simplrl φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 2 m m gcd n = 1
226 27 a1i φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 2 m 2
227 rppwr m n 2 m gcd n = 1 m 2 gcd n 2 = 1
228 207 209 226 227 syl3anc φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 2 m m gcd n = 1 m 2 gcd n 2 = 1
229 225 228 mpd φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 2 m m 2 gcd n 2 = 1
230 208 210 211 217 224 229 fltaccoprm φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 2 m m 2 gcd l = 1
231 208 210 211 216 230 224 flt4lem2 φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 2 m ¬ 2 n 2
232 209 nnzd φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 2 m n
233 dvdsexp2im 2 n 2 2 n 2 n 2
234 62 232 226 233 mp3an2i φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 2 m 2 n 2 n 2
235 231 234 mtod φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 2 m ¬ 2 n
236 235 ex φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 2 m ¬ 2 n
237 imor 2 m ¬ 2 n ¬ 2 m ¬ 2 n
238 236 237 sylib φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 ¬ 2 m ¬ 2 n
239 169 205 238 mpjaodan φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 g h ¬ 2 g g gcd h = 1 g 4 + h 4 = l 2 l < C
240 239 ex φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 g h ¬ 2 g g gcd h = 1 g 4 + h 4 = l 2 l < C
241 240 rexlimdvva φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 g h ¬ 2 g g gcd h = 1 g 4 + h 4 = l 2 l < C
242 241 expimpd φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 g h ¬ 2 g g gcd h = 1 g 4 + h 4 = l 2 l < C
243 242 reximdva φ l l < C m n m gcd n = 1 m 4 + n 4 = l 2 l g h ¬ 2 g g gcd h = 1 g 4 + h 4 = l 2 l < C
244 143 243 mpd φ l g h ¬ 2 g g gcd h = 1 g 4 + h 4 = l 2 l < C