Step |
Hyp |
Ref |
Expression |
1 |
|
nna4b4nsq.a |
|
2 |
|
nna4b4nsq.b |
|
3 |
|
nna4b4nsq.c |
|
4 |
|
oveq1 |
|
5 |
4
|
oveq1d |
|
6 |
5
|
eqeq1d |
|
7 |
|
oveq1 |
|
8 |
7
|
oveq2d |
|
9 |
8
|
eqeq1d |
|
10 |
1
|
ad2antrr |
|
11 |
2
|
ad2antrr |
|
12 |
|
simpr |
|
13 |
6 9 10 11 12
|
2rspcedvdw |
|
14 |
13
|
ex |
|
15 |
14
|
ss2rabdv |
|
16 |
|
oveq1 |
|
17 |
16
|
eqeq2d |
|
18 |
17
|
anbi2d |
|
19 |
18
|
anbi2d |
|
20 |
19
|
2rexbidv |
|
21 |
|
oveq1 |
|
22 |
21
|
eqeq2d |
|
23 |
22
|
anbi2d |
|
24 |
23
|
anbi2d |
|
25 |
24
|
2rexbidv |
|
26 |
|
nnuz |
|
27 |
26
|
eqimssi |
|
28 |
27
|
a1i |
|
29 |
|
breq2 |
|
30 |
29
|
notbid |
|
31 |
|
oveq1 |
|
32 |
31
|
eqeq1d |
|
33 |
|
oveq1 |
|
34 |
33
|
oveq1d |
|
35 |
34
|
eqeq1d |
|
36 |
32 35
|
anbi12d |
|
37 |
30 36
|
anbi12d |
|
38 |
|
oveq2 |
|
39 |
38
|
eqeq1d |
|
40 |
|
oveq1 |
|
41 |
40
|
oveq2d |
|
42 |
41
|
eqeq1d |
|
43 |
39 42
|
anbi12d |
|
44 |
43
|
anbi2d |
|
45 |
37 44
|
cbvrex2vw |
|
46 |
|
simplrl |
|
47 |
|
simplrr |
|
48 |
|
simpllr |
|
49 |
|
simprl |
|
50 |
|
simprrl |
|
51 |
|
simprrr |
|
52 |
46 47 48 49 50 51
|
flt4lem7 |
|
53 |
52
|
ex |
|
54 |
53
|
rexlimdvva |
|
55 |
45 54
|
syl5bi |
|
56 |
55
|
impr |
|
57 |
20 25 28 56
|
infdesc |
|
58 |
|
breq2 |
|
59 |
58
|
notbid |
|
60 |
|
oveq1 |
|
61 |
60
|
eqeq1d |
|
62 |
|
oveq1 |
|
63 |
62
|
oveq1d |
|
64 |
63
|
eqeq1d |
|
65 |
61 64
|
anbi12d |
|
66 |
59 65
|
anbi12d |
|
67 |
|
oveq2 |
|
68 |
67
|
eqeq1d |
|
69 |
|
oveq1 |
|
70 |
69
|
oveq2d |
|
71 |
70
|
eqeq1d |
|
72 |
68 71
|
anbi12d |
|
73 |
72
|
anbi2d |
|
74 |
|
simprl |
|
75 |
74
|
ad2antrr |
|
76 |
|
simprr |
|
77 |
76
|
ad2antrr |
|
78 |
|
simpr |
|
79 |
|
simplr |
|
80 |
78 79
|
jca |
|
81 |
66 73 75 77 80
|
2rspcedvdw |
|
82 |
|
breq2 |
|
83 |
82
|
notbid |
|
84 |
|
oveq1 |
|
85 |
84
|
eqeq1d |
|
86 |
|
oveq1 |
|
87 |
86
|
oveq1d |
|
88 |
87
|
eqeq1d |
|
89 |
85 88
|
anbi12d |
|
90 |
83 89
|
anbi12d |
|
91 |
|
oveq2 |
|
92 |
91
|
eqeq1d |
|
93 |
|
oveq1 |
|
94 |
93
|
oveq2d |
|
95 |
94
|
eqeq1d |
|
96 |
92 95
|
anbi12d |
|
97 |
96
|
anbi2d |
|
98 |
76
|
ad2antrr |
|
99 |
74
|
ad2antrr |
|
100 |
|
simpr |
|
101 |
98
|
nnzd |
|
102 |
99
|
nnzd |
|
103 |
101 102
|
gcdcomd |
|
104 |
|
simplrl |
|
105 |
103 104
|
eqtrd |
|
106 |
|
4nn0 |
|
107 |
106
|
a1i |
|
108 |
98 107
|
nnexpcld |
|
109 |
108
|
nncnd |
|
110 |
99 107
|
nnexpcld |
|
111 |
110
|
nncnd |
|
112 |
109 111
|
addcomd |
|
113 |
|
simplrr |
|
114 |
112 113
|
eqtrd |
|
115 |
100 105 114
|
jca32 |
|
116 |
90 97 98 99 115
|
2rspcedvdw |
|
117 |
74
|
ad2antrr |
|
118 |
117
|
nnsqcld |
|
119 |
76
|
ad2antrr |
|
120 |
119
|
nnsqcld |
|
121 |
|
simp-4r |
|
122 |
|
2z |
|
123 |
|
simplrl |
|
124 |
123
|
nnzd |
|
125 |
|
2nn |
|
126 |
125
|
a1i |
|
127 |
|
dvdsexp2im |
|
128 |
122 124 126 127
|
mp3an2i |
|
129 |
128
|
imp |
|
130 |
|
2nn0 |
|
131 |
130
|
a1i |
|
132 |
117
|
nncnd |
|
133 |
132
|
flt4lem |
|
134 |
119
|
nncnd |
|
135 |
134
|
flt4lem |
|
136 |
133 135
|
oveq12d |
|
137 |
|
simplrr |
|
138 |
136 137
|
eqtr3d |
|
139 |
|
simplrl |
|
140 |
125
|
a1i |
|
141 |
|
rppwr |
|
142 |
117 119 140 141
|
syl3anc |
|
143 |
139 142
|
mpd |
|
144 |
118 120 121 131 138 143
|
fltaccoprm |
|
145 |
118 120 121 129 144 138
|
flt4lem2 |
|
146 |
119
|
nnzd |
|
147 |
|
dvdsexp2im |
|
148 |
122 146 140 147
|
mp3an2i |
|
149 |
145 148
|
mtod |
|
150 |
149
|
ex |
|
151 |
|
imor |
|
152 |
150 151
|
sylib |
|
153 |
81 116 152
|
mpjaodan |
|
154 |
153
|
ex |
|
155 |
154
|
rexlimdvva |
|
156 |
155
|
reximdva |
|
157 |
156
|
con3d |
|
158 |
|
ralnex |
|
159 |
|
ralnex |
|
160 |
157 158 159
|
3imtr4g |
|
161 |
|
rabeq0 |
|
162 |
|
rabeq0 |
|
163 |
160 161 162
|
3imtr4g |
|
164 |
57 163
|
mpd |
|
165 |
|
oveq1 |
|
166 |
165
|
eqeq2d |
|
167 |
166
|
anbi2d |
|
168 |
|
oveq1 |
|
169 |
168
|
eqeq1d |
|
170 |
|
oveq1 |
|
171 |
170
|
oveq1d |
|
172 |
171
|
eqeq1d |
|
173 |
169 172
|
anbi12d |
|
174 |
|
oveq2 |
|
175 |
174
|
eqeq1d |
|
176 |
|
oveq1 |
|
177 |
176
|
oveq2d |
|
178 |
177
|
eqeq1d |
|
179 |
175 178
|
anbi12d |
|
180 |
|
simplrr |
|
181 |
|
simprl |
|
182 |
|
simplrl |
|
183 |
|
simprr |
|
184 |
180 181 182 183
|
flt4lem6 |
|
185 |
184
|
simpld |
|
186 |
185
|
simp3d |
|
187 |
185
|
simp1d |
|
188 |
185
|
simp2d |
|
189 |
180
|
nnzd |
|
190 |
181
|
nnzd |
|
191 |
181
|
nnne0d |
|
192 |
|
divgcdcoprm0 |
|
193 |
189 190 191 192
|
syl3anc |
|
194 |
184
|
simprd |
|
195 |
193 194
|
jca |
|
196 |
167 173 179 186 187 188 195
|
3rspcedvdw |
|
197 |
196
|
rexlimdvaa |
|
198 |
197
|
rexlimdvva |
|
199 |
198
|
con3d |
|
200 |
|
ralnex |
|
201 |
199 159 200
|
3imtr4g |
|
202 |
|
rabeq0 |
|
203 |
201 162 202
|
3imtr4g |
|
204 |
164 203
|
mpd |
|
205 |
|
sseq0 |
|
206 |
15 204 205
|
syl2anc |
|
207 |
|
rabeq0 |
|
208 |
206 207
|
sylib |
|
209 |
|
oveq1 |
|
210 |
209
|
eqeq2d |
|
211 |
210
|
necon3bbid |
|
212 |
211
|
rspcv |
|
213 |
3 208 212
|
sylc |
|