Step |
Hyp |
Ref |
Expression |
1 |
|
nna4b4nsq.a |
|- ( ph -> A e. NN ) |
2 |
|
nna4b4nsq.b |
|- ( ph -> B e. NN ) |
3 |
|
nna4b4nsq.c |
|- ( ph -> C e. NN ) |
4 |
|
oveq1 |
|- ( a = A -> ( a ^ 4 ) = ( A ^ 4 ) ) |
5 |
4
|
oveq1d |
|- ( a = A -> ( ( a ^ 4 ) + ( b ^ 4 ) ) = ( ( A ^ 4 ) + ( b ^ 4 ) ) ) |
6 |
5
|
eqeq1d |
|- ( a = A -> ( ( ( a ^ 4 ) + ( b ^ 4 ) ) = ( c ^ 2 ) <-> ( ( A ^ 4 ) + ( b ^ 4 ) ) = ( c ^ 2 ) ) ) |
7 |
|
oveq1 |
|- ( b = B -> ( b ^ 4 ) = ( B ^ 4 ) ) |
8 |
7
|
oveq2d |
|- ( b = B -> ( ( A ^ 4 ) + ( b ^ 4 ) ) = ( ( A ^ 4 ) + ( B ^ 4 ) ) ) |
9 |
8
|
eqeq1d |
|- ( b = B -> ( ( ( A ^ 4 ) + ( b ^ 4 ) ) = ( c ^ 2 ) <-> ( ( A ^ 4 ) + ( B ^ 4 ) ) = ( c ^ 2 ) ) ) |
10 |
1
|
ad2antrr |
|- ( ( ( ph /\ c e. NN ) /\ ( ( A ^ 4 ) + ( B ^ 4 ) ) = ( c ^ 2 ) ) -> A e. NN ) |
11 |
2
|
ad2antrr |
|- ( ( ( ph /\ c e. NN ) /\ ( ( A ^ 4 ) + ( B ^ 4 ) ) = ( c ^ 2 ) ) -> B e. NN ) |
12 |
|
simpr |
|- ( ( ( ph /\ c e. NN ) /\ ( ( A ^ 4 ) + ( B ^ 4 ) ) = ( c ^ 2 ) ) -> ( ( A ^ 4 ) + ( B ^ 4 ) ) = ( c ^ 2 ) ) |
13 |
6 9 10 11 12
|
2rspcedvdw |
|- ( ( ( ph /\ c e. NN ) /\ ( ( A ^ 4 ) + ( B ^ 4 ) ) = ( c ^ 2 ) ) -> E. a e. NN E. b e. NN ( ( a ^ 4 ) + ( b ^ 4 ) ) = ( c ^ 2 ) ) |
14 |
13
|
ex |
|- ( ( ph /\ c e. NN ) -> ( ( ( A ^ 4 ) + ( B ^ 4 ) ) = ( c ^ 2 ) -> E. a e. NN E. b e. NN ( ( a ^ 4 ) + ( b ^ 4 ) ) = ( c ^ 2 ) ) ) |
15 |
14
|
ss2rabdv |
|- ( ph -> { c e. NN | ( ( A ^ 4 ) + ( B ^ 4 ) ) = ( c ^ 2 ) } C_ { c e. NN | E. a e. NN E. b e. NN ( ( a ^ 4 ) + ( b ^ 4 ) ) = ( c ^ 2 ) } ) |
16 |
|
oveq1 |
|- ( f = i -> ( f ^ 2 ) = ( i ^ 2 ) ) |
17 |
16
|
eqeq2d |
|- ( f = i -> ( ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) <-> ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( i ^ 2 ) ) ) |
18 |
17
|
anbi2d |
|- ( f = i -> ( ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) ) <-> ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( i ^ 2 ) ) ) ) |
19 |
18
|
anbi2d |
|- ( f = i -> ( ( -. 2 || g /\ ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) ) ) <-> ( -. 2 || g /\ ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( i ^ 2 ) ) ) ) ) |
20 |
19
|
2rexbidv |
|- ( f = i -> ( E. g e. NN E. h e. NN ( -. 2 || g /\ ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) ) ) <-> E. g e. NN E. h e. NN ( -. 2 || g /\ ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( i ^ 2 ) ) ) ) ) |
21 |
|
oveq1 |
|- ( f = l -> ( f ^ 2 ) = ( l ^ 2 ) ) |
22 |
21
|
eqeq2d |
|- ( f = l -> ( ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) <-> ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( l ^ 2 ) ) ) |
23 |
22
|
anbi2d |
|- ( f = l -> ( ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) ) <-> ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( l ^ 2 ) ) ) ) |
24 |
23
|
anbi2d |
|- ( f = l -> ( ( -. 2 || g /\ ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) ) ) <-> ( -. 2 || g /\ ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( l ^ 2 ) ) ) ) ) |
25 |
24
|
2rexbidv |
|- ( f = l -> ( E. g e. NN E. h e. NN ( -. 2 || g /\ ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) ) ) <-> E. g e. NN E. h e. NN ( -. 2 || g /\ ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( l ^ 2 ) ) ) ) ) |
26 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
27 |
26
|
eqimssi |
|- NN C_ ( ZZ>= ` 1 ) |
28 |
27
|
a1i |
|- ( ph -> NN C_ ( ZZ>= ` 1 ) ) |
29 |
|
breq2 |
|- ( g = j -> ( 2 || g <-> 2 || j ) ) |
30 |
29
|
notbid |
|- ( g = j -> ( -. 2 || g <-> -. 2 || j ) ) |
31 |
|
oveq1 |
|- ( g = j -> ( g gcd h ) = ( j gcd h ) ) |
32 |
31
|
eqeq1d |
|- ( g = j -> ( ( g gcd h ) = 1 <-> ( j gcd h ) = 1 ) ) |
33 |
|
oveq1 |
|- ( g = j -> ( g ^ 4 ) = ( j ^ 4 ) ) |
34 |
33
|
oveq1d |
|- ( g = j -> ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( ( j ^ 4 ) + ( h ^ 4 ) ) ) |
35 |
34
|
eqeq1d |
|- ( g = j -> ( ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( i ^ 2 ) <-> ( ( j ^ 4 ) + ( h ^ 4 ) ) = ( i ^ 2 ) ) ) |
36 |
32 35
|
anbi12d |
|- ( g = j -> ( ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( i ^ 2 ) ) <-> ( ( j gcd h ) = 1 /\ ( ( j ^ 4 ) + ( h ^ 4 ) ) = ( i ^ 2 ) ) ) ) |
37 |
30 36
|
anbi12d |
|- ( g = j -> ( ( -. 2 || g /\ ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( i ^ 2 ) ) ) <-> ( -. 2 || j /\ ( ( j gcd h ) = 1 /\ ( ( j ^ 4 ) + ( h ^ 4 ) ) = ( i ^ 2 ) ) ) ) ) |
38 |
|
oveq2 |
|- ( h = k -> ( j gcd h ) = ( j gcd k ) ) |
39 |
38
|
eqeq1d |
|- ( h = k -> ( ( j gcd h ) = 1 <-> ( j gcd k ) = 1 ) ) |
40 |
|
oveq1 |
|- ( h = k -> ( h ^ 4 ) = ( k ^ 4 ) ) |
41 |
40
|
oveq2d |
|- ( h = k -> ( ( j ^ 4 ) + ( h ^ 4 ) ) = ( ( j ^ 4 ) + ( k ^ 4 ) ) ) |
42 |
41
|
eqeq1d |
|- ( h = k -> ( ( ( j ^ 4 ) + ( h ^ 4 ) ) = ( i ^ 2 ) <-> ( ( j ^ 4 ) + ( k ^ 4 ) ) = ( i ^ 2 ) ) ) |
43 |
39 42
|
anbi12d |
|- ( h = k -> ( ( ( j gcd h ) = 1 /\ ( ( j ^ 4 ) + ( h ^ 4 ) ) = ( i ^ 2 ) ) <-> ( ( j gcd k ) = 1 /\ ( ( j ^ 4 ) + ( k ^ 4 ) ) = ( i ^ 2 ) ) ) ) |
44 |
43
|
anbi2d |
|- ( h = k -> ( ( -. 2 || j /\ ( ( j gcd h ) = 1 /\ ( ( j ^ 4 ) + ( h ^ 4 ) ) = ( i ^ 2 ) ) ) <-> ( -. 2 || j /\ ( ( j gcd k ) = 1 /\ ( ( j ^ 4 ) + ( k ^ 4 ) ) = ( i ^ 2 ) ) ) ) ) |
45 |
37 44
|
cbvrex2vw |
|- ( E. g e. NN E. h e. NN ( -. 2 || g /\ ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( i ^ 2 ) ) ) <-> E. j e. NN E. k e. NN ( -. 2 || j /\ ( ( j gcd k ) = 1 /\ ( ( j ^ 4 ) + ( k ^ 4 ) ) = ( i ^ 2 ) ) ) ) |
46 |
|
simplrl |
|- ( ( ( ( ph /\ i e. NN ) /\ ( j e. NN /\ k e. NN ) ) /\ ( -. 2 || j /\ ( ( j gcd k ) = 1 /\ ( ( j ^ 4 ) + ( k ^ 4 ) ) = ( i ^ 2 ) ) ) ) -> j e. NN ) |
47 |
|
simplrr |
|- ( ( ( ( ph /\ i e. NN ) /\ ( j e. NN /\ k e. NN ) ) /\ ( -. 2 || j /\ ( ( j gcd k ) = 1 /\ ( ( j ^ 4 ) + ( k ^ 4 ) ) = ( i ^ 2 ) ) ) ) -> k e. NN ) |
48 |
|
simpllr |
|- ( ( ( ( ph /\ i e. NN ) /\ ( j e. NN /\ k e. NN ) ) /\ ( -. 2 || j /\ ( ( j gcd k ) = 1 /\ ( ( j ^ 4 ) + ( k ^ 4 ) ) = ( i ^ 2 ) ) ) ) -> i e. NN ) |
49 |
|
simprl |
|- ( ( ( ( ph /\ i e. NN ) /\ ( j e. NN /\ k e. NN ) ) /\ ( -. 2 || j /\ ( ( j gcd k ) = 1 /\ ( ( j ^ 4 ) + ( k ^ 4 ) ) = ( i ^ 2 ) ) ) ) -> -. 2 || j ) |
50 |
|
simprrl |
|- ( ( ( ( ph /\ i e. NN ) /\ ( j e. NN /\ k e. NN ) ) /\ ( -. 2 || j /\ ( ( j gcd k ) = 1 /\ ( ( j ^ 4 ) + ( k ^ 4 ) ) = ( i ^ 2 ) ) ) ) -> ( j gcd k ) = 1 ) |
51 |
|
simprrr |
|- ( ( ( ( ph /\ i e. NN ) /\ ( j e. NN /\ k e. NN ) ) /\ ( -. 2 || j /\ ( ( j gcd k ) = 1 /\ ( ( j ^ 4 ) + ( k ^ 4 ) ) = ( i ^ 2 ) ) ) ) -> ( ( j ^ 4 ) + ( k ^ 4 ) ) = ( i ^ 2 ) ) |
52 |
46 47 48 49 50 51
|
flt4lem7 |
|- ( ( ( ( ph /\ i e. NN ) /\ ( j e. NN /\ k e. NN ) ) /\ ( -. 2 || j /\ ( ( j gcd k ) = 1 /\ ( ( j ^ 4 ) + ( k ^ 4 ) ) = ( i ^ 2 ) ) ) ) -> E. l e. NN ( E. g e. NN E. h e. NN ( -. 2 || g /\ ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( l ^ 2 ) ) ) /\ l < i ) ) |
53 |
52
|
ex |
|- ( ( ( ph /\ i e. NN ) /\ ( j e. NN /\ k e. NN ) ) -> ( ( -. 2 || j /\ ( ( j gcd k ) = 1 /\ ( ( j ^ 4 ) + ( k ^ 4 ) ) = ( i ^ 2 ) ) ) -> E. l e. NN ( E. g e. NN E. h e. NN ( -. 2 || g /\ ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( l ^ 2 ) ) ) /\ l < i ) ) ) |
54 |
53
|
rexlimdvva |
|- ( ( ph /\ i e. NN ) -> ( E. j e. NN E. k e. NN ( -. 2 || j /\ ( ( j gcd k ) = 1 /\ ( ( j ^ 4 ) + ( k ^ 4 ) ) = ( i ^ 2 ) ) ) -> E. l e. NN ( E. g e. NN E. h e. NN ( -. 2 || g /\ ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( l ^ 2 ) ) ) /\ l < i ) ) ) |
55 |
45 54
|
syl5bi |
|- ( ( ph /\ i e. NN ) -> ( E. g e. NN E. h e. NN ( -. 2 || g /\ ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( i ^ 2 ) ) ) -> E. l e. NN ( E. g e. NN E. h e. NN ( -. 2 || g /\ ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( l ^ 2 ) ) ) /\ l < i ) ) ) |
56 |
55
|
impr |
|- ( ( ph /\ ( i e. NN /\ E. g e. NN E. h e. NN ( -. 2 || g /\ ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( i ^ 2 ) ) ) ) ) -> E. l e. NN ( E. g e. NN E. h e. NN ( -. 2 || g /\ ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( l ^ 2 ) ) ) /\ l < i ) ) |
57 |
20 25 28 56
|
infdesc |
|- ( ph -> { f e. NN | E. g e. NN E. h e. NN ( -. 2 || g /\ ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) ) ) } = (/) ) |
58 |
|
breq2 |
|- ( g = d -> ( 2 || g <-> 2 || d ) ) |
59 |
58
|
notbid |
|- ( g = d -> ( -. 2 || g <-> -. 2 || d ) ) |
60 |
|
oveq1 |
|- ( g = d -> ( g gcd h ) = ( d gcd h ) ) |
61 |
60
|
eqeq1d |
|- ( g = d -> ( ( g gcd h ) = 1 <-> ( d gcd h ) = 1 ) ) |
62 |
|
oveq1 |
|- ( g = d -> ( g ^ 4 ) = ( d ^ 4 ) ) |
63 |
62
|
oveq1d |
|- ( g = d -> ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( ( d ^ 4 ) + ( h ^ 4 ) ) ) |
64 |
63
|
eqeq1d |
|- ( g = d -> ( ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) <-> ( ( d ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) ) ) |
65 |
61 64
|
anbi12d |
|- ( g = d -> ( ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) ) <-> ( ( d gcd h ) = 1 /\ ( ( d ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) ) ) ) |
66 |
59 65
|
anbi12d |
|- ( g = d -> ( ( -. 2 || g /\ ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) ) ) <-> ( -. 2 || d /\ ( ( d gcd h ) = 1 /\ ( ( d ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) ) ) ) ) |
67 |
|
oveq2 |
|- ( h = e -> ( d gcd h ) = ( d gcd e ) ) |
68 |
67
|
eqeq1d |
|- ( h = e -> ( ( d gcd h ) = 1 <-> ( d gcd e ) = 1 ) ) |
69 |
|
oveq1 |
|- ( h = e -> ( h ^ 4 ) = ( e ^ 4 ) ) |
70 |
69
|
oveq2d |
|- ( h = e -> ( ( d ^ 4 ) + ( h ^ 4 ) ) = ( ( d ^ 4 ) + ( e ^ 4 ) ) ) |
71 |
70
|
eqeq1d |
|- ( h = e -> ( ( ( d ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) <-> ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) |
72 |
68 71
|
anbi12d |
|- ( h = e -> ( ( ( d gcd h ) = 1 /\ ( ( d ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) ) <-> ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) ) |
73 |
72
|
anbi2d |
|- ( h = e -> ( ( -. 2 || d /\ ( ( d gcd h ) = 1 /\ ( ( d ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) ) ) <-> ( -. 2 || d /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) ) ) |
74 |
|
simprl |
|- ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) -> d e. NN ) |
75 |
74
|
ad2antrr |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ -. 2 || d ) -> d e. NN ) |
76 |
|
simprr |
|- ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) -> e e. NN ) |
77 |
76
|
ad2antrr |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ -. 2 || d ) -> e e. NN ) |
78 |
|
simpr |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ -. 2 || d ) -> -. 2 || d ) |
79 |
|
simplr |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ -. 2 || d ) -> ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) |
80 |
78 79
|
jca |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ -. 2 || d ) -> ( -. 2 || d /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) ) |
81 |
66 73 75 77 80
|
2rspcedvdw |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ -. 2 || d ) -> E. g e. NN E. h e. NN ( -. 2 || g /\ ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) ) ) ) |
82 |
|
breq2 |
|- ( g = e -> ( 2 || g <-> 2 || e ) ) |
83 |
82
|
notbid |
|- ( g = e -> ( -. 2 || g <-> -. 2 || e ) ) |
84 |
|
oveq1 |
|- ( g = e -> ( g gcd h ) = ( e gcd h ) ) |
85 |
84
|
eqeq1d |
|- ( g = e -> ( ( g gcd h ) = 1 <-> ( e gcd h ) = 1 ) ) |
86 |
|
oveq1 |
|- ( g = e -> ( g ^ 4 ) = ( e ^ 4 ) ) |
87 |
86
|
oveq1d |
|- ( g = e -> ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( ( e ^ 4 ) + ( h ^ 4 ) ) ) |
88 |
87
|
eqeq1d |
|- ( g = e -> ( ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) <-> ( ( e ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) ) ) |
89 |
85 88
|
anbi12d |
|- ( g = e -> ( ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) ) <-> ( ( e gcd h ) = 1 /\ ( ( e ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) ) ) ) |
90 |
83 89
|
anbi12d |
|- ( g = e -> ( ( -. 2 || g /\ ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) ) ) <-> ( -. 2 || e /\ ( ( e gcd h ) = 1 /\ ( ( e ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) ) ) ) ) |
91 |
|
oveq2 |
|- ( h = d -> ( e gcd h ) = ( e gcd d ) ) |
92 |
91
|
eqeq1d |
|- ( h = d -> ( ( e gcd h ) = 1 <-> ( e gcd d ) = 1 ) ) |
93 |
|
oveq1 |
|- ( h = d -> ( h ^ 4 ) = ( d ^ 4 ) ) |
94 |
93
|
oveq2d |
|- ( h = d -> ( ( e ^ 4 ) + ( h ^ 4 ) ) = ( ( e ^ 4 ) + ( d ^ 4 ) ) ) |
95 |
94
|
eqeq1d |
|- ( h = d -> ( ( ( e ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) <-> ( ( e ^ 4 ) + ( d ^ 4 ) ) = ( f ^ 2 ) ) ) |
96 |
92 95
|
anbi12d |
|- ( h = d -> ( ( ( e gcd h ) = 1 /\ ( ( e ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) ) <-> ( ( e gcd d ) = 1 /\ ( ( e ^ 4 ) + ( d ^ 4 ) ) = ( f ^ 2 ) ) ) ) |
97 |
96
|
anbi2d |
|- ( h = d -> ( ( -. 2 || e /\ ( ( e gcd h ) = 1 /\ ( ( e ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) ) ) <-> ( -. 2 || e /\ ( ( e gcd d ) = 1 /\ ( ( e ^ 4 ) + ( d ^ 4 ) ) = ( f ^ 2 ) ) ) ) ) |
98 |
76
|
ad2antrr |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ -. 2 || e ) -> e e. NN ) |
99 |
74
|
ad2antrr |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ -. 2 || e ) -> d e. NN ) |
100 |
|
simpr |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ -. 2 || e ) -> -. 2 || e ) |
101 |
98
|
nnzd |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ -. 2 || e ) -> e e. ZZ ) |
102 |
99
|
nnzd |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ -. 2 || e ) -> d e. ZZ ) |
103 |
101 102
|
gcdcomd |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ -. 2 || e ) -> ( e gcd d ) = ( d gcd e ) ) |
104 |
|
simplrl |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ -. 2 || e ) -> ( d gcd e ) = 1 ) |
105 |
103 104
|
eqtrd |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ -. 2 || e ) -> ( e gcd d ) = 1 ) |
106 |
|
4nn0 |
|- 4 e. NN0 |
107 |
106
|
a1i |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ -. 2 || e ) -> 4 e. NN0 ) |
108 |
98 107
|
nnexpcld |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ -. 2 || e ) -> ( e ^ 4 ) e. NN ) |
109 |
108
|
nncnd |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ -. 2 || e ) -> ( e ^ 4 ) e. CC ) |
110 |
99 107
|
nnexpcld |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ -. 2 || e ) -> ( d ^ 4 ) e. NN ) |
111 |
110
|
nncnd |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ -. 2 || e ) -> ( d ^ 4 ) e. CC ) |
112 |
109 111
|
addcomd |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ -. 2 || e ) -> ( ( e ^ 4 ) + ( d ^ 4 ) ) = ( ( d ^ 4 ) + ( e ^ 4 ) ) ) |
113 |
|
simplrr |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ -. 2 || e ) -> ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) |
114 |
112 113
|
eqtrd |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ -. 2 || e ) -> ( ( e ^ 4 ) + ( d ^ 4 ) ) = ( f ^ 2 ) ) |
115 |
100 105 114
|
jca32 |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ -. 2 || e ) -> ( -. 2 || e /\ ( ( e gcd d ) = 1 /\ ( ( e ^ 4 ) + ( d ^ 4 ) ) = ( f ^ 2 ) ) ) ) |
116 |
90 97 98 99 115
|
2rspcedvdw |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ -. 2 || e ) -> E. g e. NN E. h e. NN ( -. 2 || g /\ ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) ) ) ) |
117 |
74
|
ad2antrr |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ 2 || d ) -> d e. NN ) |
118 |
117
|
nnsqcld |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ 2 || d ) -> ( d ^ 2 ) e. NN ) |
119 |
76
|
ad2antrr |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ 2 || d ) -> e e. NN ) |
120 |
119
|
nnsqcld |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ 2 || d ) -> ( e ^ 2 ) e. NN ) |
121 |
|
simp-4r |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ 2 || d ) -> f e. NN ) |
122 |
|
2z |
|- 2 e. ZZ |
123 |
|
simplrl |
|- ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) -> d e. NN ) |
124 |
123
|
nnzd |
|- ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) -> d e. ZZ ) |
125 |
|
2nn |
|- 2 e. NN |
126 |
125
|
a1i |
|- ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) -> 2 e. NN ) |
127 |
|
dvdsexp2im |
|- ( ( 2 e. ZZ /\ d e. ZZ /\ 2 e. NN ) -> ( 2 || d -> 2 || ( d ^ 2 ) ) ) |
128 |
122 124 126 127
|
mp3an2i |
|- ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) -> ( 2 || d -> 2 || ( d ^ 2 ) ) ) |
129 |
128
|
imp |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ 2 || d ) -> 2 || ( d ^ 2 ) ) |
130 |
|
2nn0 |
|- 2 e. NN0 |
131 |
130
|
a1i |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ 2 || d ) -> 2 e. NN0 ) |
132 |
117
|
nncnd |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ 2 || d ) -> d e. CC ) |
133 |
132
|
flt4lem |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ 2 || d ) -> ( d ^ 4 ) = ( ( d ^ 2 ) ^ 2 ) ) |
134 |
119
|
nncnd |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ 2 || d ) -> e e. CC ) |
135 |
134
|
flt4lem |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ 2 || d ) -> ( e ^ 4 ) = ( ( e ^ 2 ) ^ 2 ) ) |
136 |
133 135
|
oveq12d |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ 2 || d ) -> ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( ( ( d ^ 2 ) ^ 2 ) + ( ( e ^ 2 ) ^ 2 ) ) ) |
137 |
|
simplrr |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ 2 || d ) -> ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) |
138 |
136 137
|
eqtr3d |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ 2 || d ) -> ( ( ( d ^ 2 ) ^ 2 ) + ( ( e ^ 2 ) ^ 2 ) ) = ( f ^ 2 ) ) |
139 |
|
simplrl |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ 2 || d ) -> ( d gcd e ) = 1 ) |
140 |
125
|
a1i |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ 2 || d ) -> 2 e. NN ) |
141 |
|
rppwr |
|- ( ( d e. NN /\ e e. NN /\ 2 e. NN ) -> ( ( d gcd e ) = 1 -> ( ( d ^ 2 ) gcd ( e ^ 2 ) ) = 1 ) ) |
142 |
117 119 140 141
|
syl3anc |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ 2 || d ) -> ( ( d gcd e ) = 1 -> ( ( d ^ 2 ) gcd ( e ^ 2 ) ) = 1 ) ) |
143 |
139 142
|
mpd |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ 2 || d ) -> ( ( d ^ 2 ) gcd ( e ^ 2 ) ) = 1 ) |
144 |
118 120 121 131 138 143
|
fltaccoprm |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ 2 || d ) -> ( ( d ^ 2 ) gcd f ) = 1 ) |
145 |
118 120 121 129 144 138
|
flt4lem2 |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ 2 || d ) -> -. 2 || ( e ^ 2 ) ) |
146 |
119
|
nnzd |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ 2 || d ) -> e e. ZZ ) |
147 |
|
dvdsexp2im |
|- ( ( 2 e. ZZ /\ e e. ZZ /\ 2 e. NN ) -> ( 2 || e -> 2 || ( e ^ 2 ) ) ) |
148 |
122 146 140 147
|
mp3an2i |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ 2 || d ) -> ( 2 || e -> 2 || ( e ^ 2 ) ) ) |
149 |
145 148
|
mtod |
|- ( ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) /\ 2 || d ) -> -. 2 || e ) |
150 |
149
|
ex |
|- ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) -> ( 2 || d -> -. 2 || e ) ) |
151 |
|
imor |
|- ( ( 2 || d -> -. 2 || e ) <-> ( -. 2 || d \/ -. 2 || e ) ) |
152 |
150 151
|
sylib |
|- ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) -> ( -. 2 || d \/ -. 2 || e ) ) |
153 |
81 116 152
|
mpjaodan |
|- ( ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) /\ ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) -> E. g e. NN E. h e. NN ( -. 2 || g /\ ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) ) ) ) |
154 |
153
|
ex |
|- ( ( ( ph /\ f e. NN ) /\ ( d e. NN /\ e e. NN ) ) -> ( ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) -> E. g e. NN E. h e. NN ( -. 2 || g /\ ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) ) ) ) ) |
155 |
154
|
rexlimdvva |
|- ( ( ph /\ f e. NN ) -> ( E. d e. NN E. e e. NN ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) -> E. g e. NN E. h e. NN ( -. 2 || g /\ ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) ) ) ) ) |
156 |
155
|
reximdva |
|- ( ph -> ( E. f e. NN E. d e. NN E. e e. NN ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) -> E. f e. NN E. g e. NN E. h e. NN ( -. 2 || g /\ ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) ) ) ) ) |
157 |
156
|
con3d |
|- ( ph -> ( -. E. f e. NN E. g e. NN E. h e. NN ( -. 2 || g /\ ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) ) ) -> -. E. f e. NN E. d e. NN E. e e. NN ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) ) |
158 |
|
ralnex |
|- ( A. f e. NN -. E. g e. NN E. h e. NN ( -. 2 || g /\ ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) ) ) <-> -. E. f e. NN E. g e. NN E. h e. NN ( -. 2 || g /\ ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) ) ) ) |
159 |
|
ralnex |
|- ( A. f e. NN -. E. d e. NN E. e e. NN ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) <-> -. E. f e. NN E. d e. NN E. e e. NN ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) |
160 |
157 158 159
|
3imtr4g |
|- ( ph -> ( A. f e. NN -. E. g e. NN E. h e. NN ( -. 2 || g /\ ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) ) ) -> A. f e. NN -. E. d e. NN E. e e. NN ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) ) |
161 |
|
rabeq0 |
|- ( { f e. NN | E. g e. NN E. h e. NN ( -. 2 || g /\ ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) ) ) } = (/) <-> A. f e. NN -. E. g e. NN E. h e. NN ( -. 2 || g /\ ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) ) ) ) |
162 |
|
rabeq0 |
|- ( { f e. NN | E. d e. NN E. e e. NN ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) } = (/) <-> A. f e. NN -. E. d e. NN E. e e. NN ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) |
163 |
160 161 162
|
3imtr4g |
|- ( ph -> ( { f e. NN | E. g e. NN E. h e. NN ( -. 2 || g /\ ( ( g gcd h ) = 1 /\ ( ( g ^ 4 ) + ( h ^ 4 ) ) = ( f ^ 2 ) ) ) } = (/) -> { f e. NN | E. d e. NN E. e e. NN ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) } = (/) ) ) |
164 |
57 163
|
mpd |
|- ( ph -> { f e. NN | E. d e. NN E. e e. NN ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) } = (/) ) |
165 |
|
oveq1 |
|- ( f = ( c / ( ( a gcd b ) ^ 2 ) ) -> ( f ^ 2 ) = ( ( c / ( ( a gcd b ) ^ 2 ) ) ^ 2 ) ) |
166 |
165
|
eqeq2d |
|- ( f = ( c / ( ( a gcd b ) ^ 2 ) ) -> ( ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) <-> ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( ( c / ( ( a gcd b ) ^ 2 ) ) ^ 2 ) ) ) |
167 |
166
|
anbi2d |
|- ( f = ( c / ( ( a gcd b ) ^ 2 ) ) -> ( ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) <-> ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( ( c / ( ( a gcd b ) ^ 2 ) ) ^ 2 ) ) ) ) |
168 |
|
oveq1 |
|- ( d = ( a / ( a gcd b ) ) -> ( d gcd e ) = ( ( a / ( a gcd b ) ) gcd e ) ) |
169 |
168
|
eqeq1d |
|- ( d = ( a / ( a gcd b ) ) -> ( ( d gcd e ) = 1 <-> ( ( a / ( a gcd b ) ) gcd e ) = 1 ) ) |
170 |
|
oveq1 |
|- ( d = ( a / ( a gcd b ) ) -> ( d ^ 4 ) = ( ( a / ( a gcd b ) ) ^ 4 ) ) |
171 |
170
|
oveq1d |
|- ( d = ( a / ( a gcd b ) ) -> ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( ( ( a / ( a gcd b ) ) ^ 4 ) + ( e ^ 4 ) ) ) |
172 |
171
|
eqeq1d |
|- ( d = ( a / ( a gcd b ) ) -> ( ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( ( c / ( ( a gcd b ) ^ 2 ) ) ^ 2 ) <-> ( ( ( a / ( a gcd b ) ) ^ 4 ) + ( e ^ 4 ) ) = ( ( c / ( ( a gcd b ) ^ 2 ) ) ^ 2 ) ) ) |
173 |
169 172
|
anbi12d |
|- ( d = ( a / ( a gcd b ) ) -> ( ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( ( c / ( ( a gcd b ) ^ 2 ) ) ^ 2 ) ) <-> ( ( ( a / ( a gcd b ) ) gcd e ) = 1 /\ ( ( ( a / ( a gcd b ) ) ^ 4 ) + ( e ^ 4 ) ) = ( ( c / ( ( a gcd b ) ^ 2 ) ) ^ 2 ) ) ) ) |
174 |
|
oveq2 |
|- ( e = ( b / ( a gcd b ) ) -> ( ( a / ( a gcd b ) ) gcd e ) = ( ( a / ( a gcd b ) ) gcd ( b / ( a gcd b ) ) ) ) |
175 |
174
|
eqeq1d |
|- ( e = ( b / ( a gcd b ) ) -> ( ( ( a / ( a gcd b ) ) gcd e ) = 1 <-> ( ( a / ( a gcd b ) ) gcd ( b / ( a gcd b ) ) ) = 1 ) ) |
176 |
|
oveq1 |
|- ( e = ( b / ( a gcd b ) ) -> ( e ^ 4 ) = ( ( b / ( a gcd b ) ) ^ 4 ) ) |
177 |
176
|
oveq2d |
|- ( e = ( b / ( a gcd b ) ) -> ( ( ( a / ( a gcd b ) ) ^ 4 ) + ( e ^ 4 ) ) = ( ( ( a / ( a gcd b ) ) ^ 4 ) + ( ( b / ( a gcd b ) ) ^ 4 ) ) ) |
178 |
177
|
eqeq1d |
|- ( e = ( b / ( a gcd b ) ) -> ( ( ( ( a / ( a gcd b ) ) ^ 4 ) + ( e ^ 4 ) ) = ( ( c / ( ( a gcd b ) ^ 2 ) ) ^ 2 ) <-> ( ( ( a / ( a gcd b ) ) ^ 4 ) + ( ( b / ( a gcd b ) ) ^ 4 ) ) = ( ( c / ( ( a gcd b ) ^ 2 ) ) ^ 2 ) ) ) |
179 |
175 178
|
anbi12d |
|- ( e = ( b / ( a gcd b ) ) -> ( ( ( ( a / ( a gcd b ) ) gcd e ) = 1 /\ ( ( ( a / ( a gcd b ) ) ^ 4 ) + ( e ^ 4 ) ) = ( ( c / ( ( a gcd b ) ^ 2 ) ) ^ 2 ) ) <-> ( ( ( a / ( a gcd b ) ) gcd ( b / ( a gcd b ) ) ) = 1 /\ ( ( ( a / ( a gcd b ) ) ^ 4 ) + ( ( b / ( a gcd b ) ) ^ 4 ) ) = ( ( c / ( ( a gcd b ) ^ 2 ) ) ^ 2 ) ) ) ) |
180 |
|
simplrr |
|- ( ( ( ph /\ ( c e. NN /\ a e. NN ) ) /\ ( b e. NN /\ ( ( a ^ 4 ) + ( b ^ 4 ) ) = ( c ^ 2 ) ) ) -> a e. NN ) |
181 |
|
simprl |
|- ( ( ( ph /\ ( c e. NN /\ a e. NN ) ) /\ ( b e. NN /\ ( ( a ^ 4 ) + ( b ^ 4 ) ) = ( c ^ 2 ) ) ) -> b e. NN ) |
182 |
|
simplrl |
|- ( ( ( ph /\ ( c e. NN /\ a e. NN ) ) /\ ( b e. NN /\ ( ( a ^ 4 ) + ( b ^ 4 ) ) = ( c ^ 2 ) ) ) -> c e. NN ) |
183 |
|
simprr |
|- ( ( ( ph /\ ( c e. NN /\ a e. NN ) ) /\ ( b e. NN /\ ( ( a ^ 4 ) + ( b ^ 4 ) ) = ( c ^ 2 ) ) ) -> ( ( a ^ 4 ) + ( b ^ 4 ) ) = ( c ^ 2 ) ) |
184 |
180 181 182 183
|
flt4lem6 |
|- ( ( ( ph /\ ( c e. NN /\ a e. NN ) ) /\ ( b e. NN /\ ( ( a ^ 4 ) + ( b ^ 4 ) ) = ( c ^ 2 ) ) ) -> ( ( ( a / ( a gcd b ) ) e. NN /\ ( b / ( a gcd b ) ) e. NN /\ ( c / ( ( a gcd b ) ^ 2 ) ) e. NN ) /\ ( ( ( a / ( a gcd b ) ) ^ 4 ) + ( ( b / ( a gcd b ) ) ^ 4 ) ) = ( ( c / ( ( a gcd b ) ^ 2 ) ) ^ 2 ) ) ) |
185 |
184
|
simpld |
|- ( ( ( ph /\ ( c e. NN /\ a e. NN ) ) /\ ( b e. NN /\ ( ( a ^ 4 ) + ( b ^ 4 ) ) = ( c ^ 2 ) ) ) -> ( ( a / ( a gcd b ) ) e. NN /\ ( b / ( a gcd b ) ) e. NN /\ ( c / ( ( a gcd b ) ^ 2 ) ) e. NN ) ) |
186 |
185
|
simp3d |
|- ( ( ( ph /\ ( c e. NN /\ a e. NN ) ) /\ ( b e. NN /\ ( ( a ^ 4 ) + ( b ^ 4 ) ) = ( c ^ 2 ) ) ) -> ( c / ( ( a gcd b ) ^ 2 ) ) e. NN ) |
187 |
185
|
simp1d |
|- ( ( ( ph /\ ( c e. NN /\ a e. NN ) ) /\ ( b e. NN /\ ( ( a ^ 4 ) + ( b ^ 4 ) ) = ( c ^ 2 ) ) ) -> ( a / ( a gcd b ) ) e. NN ) |
188 |
185
|
simp2d |
|- ( ( ( ph /\ ( c e. NN /\ a e. NN ) ) /\ ( b e. NN /\ ( ( a ^ 4 ) + ( b ^ 4 ) ) = ( c ^ 2 ) ) ) -> ( b / ( a gcd b ) ) e. NN ) |
189 |
180
|
nnzd |
|- ( ( ( ph /\ ( c e. NN /\ a e. NN ) ) /\ ( b e. NN /\ ( ( a ^ 4 ) + ( b ^ 4 ) ) = ( c ^ 2 ) ) ) -> a e. ZZ ) |
190 |
181
|
nnzd |
|- ( ( ( ph /\ ( c e. NN /\ a e. NN ) ) /\ ( b e. NN /\ ( ( a ^ 4 ) + ( b ^ 4 ) ) = ( c ^ 2 ) ) ) -> b e. ZZ ) |
191 |
181
|
nnne0d |
|- ( ( ( ph /\ ( c e. NN /\ a e. NN ) ) /\ ( b e. NN /\ ( ( a ^ 4 ) + ( b ^ 4 ) ) = ( c ^ 2 ) ) ) -> b =/= 0 ) |
192 |
|
divgcdcoprm0 |
|- ( ( a e. ZZ /\ b e. ZZ /\ b =/= 0 ) -> ( ( a / ( a gcd b ) ) gcd ( b / ( a gcd b ) ) ) = 1 ) |
193 |
189 190 191 192
|
syl3anc |
|- ( ( ( ph /\ ( c e. NN /\ a e. NN ) ) /\ ( b e. NN /\ ( ( a ^ 4 ) + ( b ^ 4 ) ) = ( c ^ 2 ) ) ) -> ( ( a / ( a gcd b ) ) gcd ( b / ( a gcd b ) ) ) = 1 ) |
194 |
184
|
simprd |
|- ( ( ( ph /\ ( c e. NN /\ a e. NN ) ) /\ ( b e. NN /\ ( ( a ^ 4 ) + ( b ^ 4 ) ) = ( c ^ 2 ) ) ) -> ( ( ( a / ( a gcd b ) ) ^ 4 ) + ( ( b / ( a gcd b ) ) ^ 4 ) ) = ( ( c / ( ( a gcd b ) ^ 2 ) ) ^ 2 ) ) |
195 |
193 194
|
jca |
|- ( ( ( ph /\ ( c e. NN /\ a e. NN ) ) /\ ( b e. NN /\ ( ( a ^ 4 ) + ( b ^ 4 ) ) = ( c ^ 2 ) ) ) -> ( ( ( a / ( a gcd b ) ) gcd ( b / ( a gcd b ) ) ) = 1 /\ ( ( ( a / ( a gcd b ) ) ^ 4 ) + ( ( b / ( a gcd b ) ) ^ 4 ) ) = ( ( c / ( ( a gcd b ) ^ 2 ) ) ^ 2 ) ) ) |
196 |
167 173 179 186 187 188 195
|
3rspcedvdw |
|- ( ( ( ph /\ ( c e. NN /\ a e. NN ) ) /\ ( b e. NN /\ ( ( a ^ 4 ) + ( b ^ 4 ) ) = ( c ^ 2 ) ) ) -> E. f e. NN E. d e. NN E. e e. NN ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) |
197 |
196
|
rexlimdvaa |
|- ( ( ph /\ ( c e. NN /\ a e. NN ) ) -> ( E. b e. NN ( ( a ^ 4 ) + ( b ^ 4 ) ) = ( c ^ 2 ) -> E. f e. NN E. d e. NN E. e e. NN ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) ) |
198 |
197
|
rexlimdvva |
|- ( ph -> ( E. c e. NN E. a e. NN E. b e. NN ( ( a ^ 4 ) + ( b ^ 4 ) ) = ( c ^ 2 ) -> E. f e. NN E. d e. NN E. e e. NN ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) ) ) |
199 |
198
|
con3d |
|- ( ph -> ( -. E. f e. NN E. d e. NN E. e e. NN ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) -> -. E. c e. NN E. a e. NN E. b e. NN ( ( a ^ 4 ) + ( b ^ 4 ) ) = ( c ^ 2 ) ) ) |
200 |
|
ralnex |
|- ( A. c e. NN -. E. a e. NN E. b e. NN ( ( a ^ 4 ) + ( b ^ 4 ) ) = ( c ^ 2 ) <-> -. E. c e. NN E. a e. NN E. b e. NN ( ( a ^ 4 ) + ( b ^ 4 ) ) = ( c ^ 2 ) ) |
201 |
199 159 200
|
3imtr4g |
|- ( ph -> ( A. f e. NN -. E. d e. NN E. e e. NN ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) -> A. c e. NN -. E. a e. NN E. b e. NN ( ( a ^ 4 ) + ( b ^ 4 ) ) = ( c ^ 2 ) ) ) |
202 |
|
rabeq0 |
|- ( { c e. NN | E. a e. NN E. b e. NN ( ( a ^ 4 ) + ( b ^ 4 ) ) = ( c ^ 2 ) } = (/) <-> A. c e. NN -. E. a e. NN E. b e. NN ( ( a ^ 4 ) + ( b ^ 4 ) ) = ( c ^ 2 ) ) |
203 |
201 162 202
|
3imtr4g |
|- ( ph -> ( { f e. NN | E. d e. NN E. e e. NN ( ( d gcd e ) = 1 /\ ( ( d ^ 4 ) + ( e ^ 4 ) ) = ( f ^ 2 ) ) } = (/) -> { c e. NN | E. a e. NN E. b e. NN ( ( a ^ 4 ) + ( b ^ 4 ) ) = ( c ^ 2 ) } = (/) ) ) |
204 |
164 203
|
mpd |
|- ( ph -> { c e. NN | E. a e. NN E. b e. NN ( ( a ^ 4 ) + ( b ^ 4 ) ) = ( c ^ 2 ) } = (/) ) |
205 |
|
sseq0 |
|- ( ( { c e. NN | ( ( A ^ 4 ) + ( B ^ 4 ) ) = ( c ^ 2 ) } C_ { c e. NN | E. a e. NN E. b e. NN ( ( a ^ 4 ) + ( b ^ 4 ) ) = ( c ^ 2 ) } /\ { c e. NN | E. a e. NN E. b e. NN ( ( a ^ 4 ) + ( b ^ 4 ) ) = ( c ^ 2 ) } = (/) ) -> { c e. NN | ( ( A ^ 4 ) + ( B ^ 4 ) ) = ( c ^ 2 ) } = (/) ) |
206 |
15 204 205
|
syl2anc |
|- ( ph -> { c e. NN | ( ( A ^ 4 ) + ( B ^ 4 ) ) = ( c ^ 2 ) } = (/) ) |
207 |
|
rabeq0 |
|- ( { c e. NN | ( ( A ^ 4 ) + ( B ^ 4 ) ) = ( c ^ 2 ) } = (/) <-> A. c e. NN -. ( ( A ^ 4 ) + ( B ^ 4 ) ) = ( c ^ 2 ) ) |
208 |
206 207
|
sylib |
|- ( ph -> A. c e. NN -. ( ( A ^ 4 ) + ( B ^ 4 ) ) = ( c ^ 2 ) ) |
209 |
|
oveq1 |
|- ( c = C -> ( c ^ 2 ) = ( C ^ 2 ) ) |
210 |
209
|
eqeq2d |
|- ( c = C -> ( ( ( A ^ 4 ) + ( B ^ 4 ) ) = ( c ^ 2 ) <-> ( ( A ^ 4 ) + ( B ^ 4 ) ) = ( C ^ 2 ) ) ) |
211 |
210
|
necon3bbid |
|- ( c = C -> ( -. ( ( A ^ 4 ) + ( B ^ 4 ) ) = ( c ^ 2 ) <-> ( ( A ^ 4 ) + ( B ^ 4 ) ) =/= ( C ^ 2 ) ) ) |
212 |
211
|
rspcv |
|- ( C e. NN -> ( A. c e. NN -. ( ( A ^ 4 ) + ( B ^ 4 ) ) = ( c ^ 2 ) -> ( ( A ^ 4 ) + ( B ^ 4 ) ) =/= ( C ^ 2 ) ) ) |
213 |
3 208 212
|
sylc |
|- ( ph -> ( ( A ^ 4 ) + ( B ^ 4 ) ) =/= ( C ^ 2 ) ) |