Step |
Hyp |
Ref |
Expression |
1 |
|
nna4b4nsq.a |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |
2 |
|
nna4b4nsq.b |
⊢ ( 𝜑 → 𝐵 ∈ ℕ ) |
3 |
|
nna4b4nsq.c |
⊢ ( 𝜑 → 𝐶 ∈ ℕ ) |
4 |
|
oveq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ↑ 4 ) = ( 𝐴 ↑ 4 ) ) |
5 |
4
|
oveq1d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( ( 𝐴 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) ) |
6 |
5
|
eqeq1d |
⊢ ( 𝑎 = 𝐴 → ( ( ( 𝑎 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ↔ ( ( 𝐴 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ) ) |
7 |
|
oveq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 ↑ 4 ) = ( 𝐵 ↑ 4 ) ) |
8 |
7
|
oveq2d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝐴 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) ) |
9 |
8
|
eqeq1d |
⊢ ( 𝑏 = 𝐵 → ( ( ( 𝐴 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ↔ ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ) ) |
10 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ) → 𝐴 ∈ ℕ ) |
11 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ) → 𝐵 ∈ ℕ ) |
12 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ) → ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ) |
13 |
6 9 10 11 12
|
2rspcedvdw |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ) → ∃ 𝑎 ∈ ℕ ∃ 𝑏 ∈ ℕ ( ( 𝑎 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ) |
14 |
13
|
ex |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ℕ ) → ( ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) → ∃ 𝑎 ∈ ℕ ∃ 𝑏 ∈ ℕ ( ( 𝑎 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ) ) |
15 |
14
|
ss2rabdv |
⊢ ( 𝜑 → { 𝑐 ∈ ℕ ∣ ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) } ⊆ { 𝑐 ∈ ℕ ∣ ∃ 𝑎 ∈ ℕ ∃ 𝑏 ∈ ℕ ( ( 𝑎 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) } ) |
16 |
|
oveq1 |
⊢ ( 𝑓 = 𝑖 → ( 𝑓 ↑ 2 ) = ( 𝑖 ↑ 2 ) ) |
17 |
16
|
eqeq2d |
⊢ ( 𝑓 = 𝑖 → ( ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ↔ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑖 ↑ 2 ) ) ) |
18 |
17
|
anbi2d |
⊢ ( 𝑓 = 𝑖 → ( ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ↔ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑖 ↑ 2 ) ) ) ) |
19 |
18
|
anbi2d |
⊢ ( 𝑓 = 𝑖 → ( ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ↔ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑖 ↑ 2 ) ) ) ) ) |
20 |
19
|
2rexbidv |
⊢ ( 𝑓 = 𝑖 → ( ∃ 𝑔 ∈ ℕ ∃ ℎ ∈ ℕ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ↔ ∃ 𝑔 ∈ ℕ ∃ ℎ ∈ ℕ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑖 ↑ 2 ) ) ) ) ) |
21 |
|
oveq1 |
⊢ ( 𝑓 = 𝑙 → ( 𝑓 ↑ 2 ) = ( 𝑙 ↑ 2 ) ) |
22 |
21
|
eqeq2d |
⊢ ( 𝑓 = 𝑙 → ( ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ↔ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) |
23 |
22
|
anbi2d |
⊢ ( 𝑓 = 𝑙 → ( ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ↔ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ) |
24 |
23
|
anbi2d |
⊢ ( 𝑓 = 𝑙 → ( ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ↔ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ) ) |
25 |
24
|
2rexbidv |
⊢ ( 𝑓 = 𝑙 → ( ∃ 𝑔 ∈ ℕ ∃ ℎ ∈ ℕ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ↔ ∃ 𝑔 ∈ ℕ ∃ ℎ ∈ ℕ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ) ) |
26 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
27 |
26
|
eqimssi |
⊢ ℕ ⊆ ( ℤ≥ ‘ 1 ) |
28 |
27
|
a1i |
⊢ ( 𝜑 → ℕ ⊆ ( ℤ≥ ‘ 1 ) ) |
29 |
|
breq2 |
⊢ ( 𝑔 = 𝑗 → ( 2 ∥ 𝑔 ↔ 2 ∥ 𝑗 ) ) |
30 |
29
|
notbid |
⊢ ( 𝑔 = 𝑗 → ( ¬ 2 ∥ 𝑔 ↔ ¬ 2 ∥ 𝑗 ) ) |
31 |
|
oveq1 |
⊢ ( 𝑔 = 𝑗 → ( 𝑔 gcd ℎ ) = ( 𝑗 gcd ℎ ) ) |
32 |
31
|
eqeq1d |
⊢ ( 𝑔 = 𝑗 → ( ( 𝑔 gcd ℎ ) = 1 ↔ ( 𝑗 gcd ℎ ) = 1 ) ) |
33 |
|
oveq1 |
⊢ ( 𝑔 = 𝑗 → ( 𝑔 ↑ 4 ) = ( 𝑗 ↑ 4 ) ) |
34 |
33
|
oveq1d |
⊢ ( 𝑔 = 𝑗 → ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( ( 𝑗 ↑ 4 ) + ( ℎ ↑ 4 ) ) ) |
35 |
34
|
eqeq1d |
⊢ ( 𝑔 = 𝑗 → ( ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑖 ↑ 2 ) ↔ ( ( 𝑗 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑖 ↑ 2 ) ) ) |
36 |
32 35
|
anbi12d |
⊢ ( 𝑔 = 𝑗 → ( ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑖 ↑ 2 ) ) ↔ ( ( 𝑗 gcd ℎ ) = 1 ∧ ( ( 𝑗 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑖 ↑ 2 ) ) ) ) |
37 |
30 36
|
anbi12d |
⊢ ( 𝑔 = 𝑗 → ( ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑖 ↑ 2 ) ) ) ↔ ( ¬ 2 ∥ 𝑗 ∧ ( ( 𝑗 gcd ℎ ) = 1 ∧ ( ( 𝑗 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑖 ↑ 2 ) ) ) ) ) |
38 |
|
oveq2 |
⊢ ( ℎ = 𝑘 → ( 𝑗 gcd ℎ ) = ( 𝑗 gcd 𝑘 ) ) |
39 |
38
|
eqeq1d |
⊢ ( ℎ = 𝑘 → ( ( 𝑗 gcd ℎ ) = 1 ↔ ( 𝑗 gcd 𝑘 ) = 1 ) ) |
40 |
|
oveq1 |
⊢ ( ℎ = 𝑘 → ( ℎ ↑ 4 ) = ( 𝑘 ↑ 4 ) ) |
41 |
40
|
oveq2d |
⊢ ( ℎ = 𝑘 → ( ( 𝑗 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( ( 𝑗 ↑ 4 ) + ( 𝑘 ↑ 4 ) ) ) |
42 |
41
|
eqeq1d |
⊢ ( ℎ = 𝑘 → ( ( ( 𝑗 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑖 ↑ 2 ) ↔ ( ( 𝑗 ↑ 4 ) + ( 𝑘 ↑ 4 ) ) = ( 𝑖 ↑ 2 ) ) ) |
43 |
39 42
|
anbi12d |
⊢ ( ℎ = 𝑘 → ( ( ( 𝑗 gcd ℎ ) = 1 ∧ ( ( 𝑗 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑖 ↑ 2 ) ) ↔ ( ( 𝑗 gcd 𝑘 ) = 1 ∧ ( ( 𝑗 ↑ 4 ) + ( 𝑘 ↑ 4 ) ) = ( 𝑖 ↑ 2 ) ) ) ) |
44 |
43
|
anbi2d |
⊢ ( ℎ = 𝑘 → ( ( ¬ 2 ∥ 𝑗 ∧ ( ( 𝑗 gcd ℎ ) = 1 ∧ ( ( 𝑗 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑖 ↑ 2 ) ) ) ↔ ( ¬ 2 ∥ 𝑗 ∧ ( ( 𝑗 gcd 𝑘 ) = 1 ∧ ( ( 𝑗 ↑ 4 ) + ( 𝑘 ↑ 4 ) ) = ( 𝑖 ↑ 2 ) ) ) ) ) |
45 |
37 44
|
cbvrex2vw |
⊢ ( ∃ 𝑔 ∈ ℕ ∃ ℎ ∈ ℕ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑖 ↑ 2 ) ) ) ↔ ∃ 𝑗 ∈ ℕ ∃ 𝑘 ∈ ℕ ( ¬ 2 ∥ 𝑗 ∧ ( ( 𝑗 gcd 𝑘 ) = 1 ∧ ( ( 𝑗 ↑ 4 ) + ( 𝑘 ↑ 4 ) ) = ( 𝑖 ↑ 2 ) ) ) ) |
46 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) ∧ ( ¬ 2 ∥ 𝑗 ∧ ( ( 𝑗 gcd 𝑘 ) = 1 ∧ ( ( 𝑗 ↑ 4 ) + ( 𝑘 ↑ 4 ) ) = ( 𝑖 ↑ 2 ) ) ) ) → 𝑗 ∈ ℕ ) |
47 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) ∧ ( ¬ 2 ∥ 𝑗 ∧ ( ( 𝑗 gcd 𝑘 ) = 1 ∧ ( ( 𝑗 ↑ 4 ) + ( 𝑘 ↑ 4 ) ) = ( 𝑖 ↑ 2 ) ) ) ) → 𝑘 ∈ ℕ ) |
48 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) ∧ ( ¬ 2 ∥ 𝑗 ∧ ( ( 𝑗 gcd 𝑘 ) = 1 ∧ ( ( 𝑗 ↑ 4 ) + ( 𝑘 ↑ 4 ) ) = ( 𝑖 ↑ 2 ) ) ) ) → 𝑖 ∈ ℕ ) |
49 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) ∧ ( ¬ 2 ∥ 𝑗 ∧ ( ( 𝑗 gcd 𝑘 ) = 1 ∧ ( ( 𝑗 ↑ 4 ) + ( 𝑘 ↑ 4 ) ) = ( 𝑖 ↑ 2 ) ) ) ) → ¬ 2 ∥ 𝑗 ) |
50 |
|
simprrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) ∧ ( ¬ 2 ∥ 𝑗 ∧ ( ( 𝑗 gcd 𝑘 ) = 1 ∧ ( ( 𝑗 ↑ 4 ) + ( 𝑘 ↑ 4 ) ) = ( 𝑖 ↑ 2 ) ) ) ) → ( 𝑗 gcd 𝑘 ) = 1 ) |
51 |
|
simprrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) ∧ ( ¬ 2 ∥ 𝑗 ∧ ( ( 𝑗 gcd 𝑘 ) = 1 ∧ ( ( 𝑗 ↑ 4 ) + ( 𝑘 ↑ 4 ) ) = ( 𝑖 ↑ 2 ) ) ) ) → ( ( 𝑗 ↑ 4 ) + ( 𝑘 ↑ 4 ) ) = ( 𝑖 ↑ 2 ) ) |
52 |
46 47 48 49 50 51
|
flt4lem7 |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) ∧ ( ¬ 2 ∥ 𝑗 ∧ ( ( 𝑗 gcd 𝑘 ) = 1 ∧ ( ( 𝑗 ↑ 4 ) + ( 𝑘 ↑ 4 ) ) = ( 𝑖 ↑ 2 ) ) ) ) → ∃ 𝑙 ∈ ℕ ( ∃ 𝑔 ∈ ℕ ∃ ℎ ∈ ℕ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ 𝑙 < 𝑖 ) ) |
53 |
52
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( ¬ 2 ∥ 𝑗 ∧ ( ( 𝑗 gcd 𝑘 ) = 1 ∧ ( ( 𝑗 ↑ 4 ) + ( 𝑘 ↑ 4 ) ) = ( 𝑖 ↑ 2 ) ) ) → ∃ 𝑙 ∈ ℕ ( ∃ 𝑔 ∈ ℕ ∃ ℎ ∈ ℕ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ 𝑙 < 𝑖 ) ) ) |
54 |
53
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( ∃ 𝑗 ∈ ℕ ∃ 𝑘 ∈ ℕ ( ¬ 2 ∥ 𝑗 ∧ ( ( 𝑗 gcd 𝑘 ) = 1 ∧ ( ( 𝑗 ↑ 4 ) + ( 𝑘 ↑ 4 ) ) = ( 𝑖 ↑ 2 ) ) ) → ∃ 𝑙 ∈ ℕ ( ∃ 𝑔 ∈ ℕ ∃ ℎ ∈ ℕ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ 𝑙 < 𝑖 ) ) ) |
55 |
45 54
|
syl5bi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( ∃ 𝑔 ∈ ℕ ∃ ℎ ∈ ℕ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑖 ↑ 2 ) ) ) → ∃ 𝑙 ∈ ℕ ( ∃ 𝑔 ∈ ℕ ∃ ℎ ∈ ℕ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ 𝑙 < 𝑖 ) ) ) |
56 |
55
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℕ ∧ ∃ 𝑔 ∈ ℕ ∃ ℎ ∈ ℕ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑖 ↑ 2 ) ) ) ) ) → ∃ 𝑙 ∈ ℕ ( ∃ 𝑔 ∈ ℕ ∃ ℎ ∈ ℕ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ 𝑙 < 𝑖 ) ) |
57 |
20 25 28 56
|
infdesc |
⊢ ( 𝜑 → { 𝑓 ∈ ℕ ∣ ∃ 𝑔 ∈ ℕ ∃ ℎ ∈ ℕ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) } = ∅ ) |
58 |
|
breq2 |
⊢ ( 𝑔 = 𝑑 → ( 2 ∥ 𝑔 ↔ 2 ∥ 𝑑 ) ) |
59 |
58
|
notbid |
⊢ ( 𝑔 = 𝑑 → ( ¬ 2 ∥ 𝑔 ↔ ¬ 2 ∥ 𝑑 ) ) |
60 |
|
oveq1 |
⊢ ( 𝑔 = 𝑑 → ( 𝑔 gcd ℎ ) = ( 𝑑 gcd ℎ ) ) |
61 |
60
|
eqeq1d |
⊢ ( 𝑔 = 𝑑 → ( ( 𝑔 gcd ℎ ) = 1 ↔ ( 𝑑 gcd ℎ ) = 1 ) ) |
62 |
|
oveq1 |
⊢ ( 𝑔 = 𝑑 → ( 𝑔 ↑ 4 ) = ( 𝑑 ↑ 4 ) ) |
63 |
62
|
oveq1d |
⊢ ( 𝑔 = 𝑑 → ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( ( 𝑑 ↑ 4 ) + ( ℎ ↑ 4 ) ) ) |
64 |
63
|
eqeq1d |
⊢ ( 𝑔 = 𝑑 → ( ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ↔ ( ( 𝑑 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) |
65 |
61 64
|
anbi12d |
⊢ ( 𝑔 = 𝑑 → ( ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ↔ ( ( 𝑑 gcd ℎ ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ) |
66 |
59 65
|
anbi12d |
⊢ ( 𝑔 = 𝑑 → ( ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ↔ ( ¬ 2 ∥ 𝑑 ∧ ( ( 𝑑 gcd ℎ ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ) ) |
67 |
|
oveq2 |
⊢ ( ℎ = 𝑒 → ( 𝑑 gcd ℎ ) = ( 𝑑 gcd 𝑒 ) ) |
68 |
67
|
eqeq1d |
⊢ ( ℎ = 𝑒 → ( ( 𝑑 gcd ℎ ) = 1 ↔ ( 𝑑 gcd 𝑒 ) = 1 ) ) |
69 |
|
oveq1 |
⊢ ( ℎ = 𝑒 → ( ℎ ↑ 4 ) = ( 𝑒 ↑ 4 ) ) |
70 |
69
|
oveq2d |
⊢ ( ℎ = 𝑒 → ( ( 𝑑 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) ) |
71 |
70
|
eqeq1d |
⊢ ( ℎ = 𝑒 → ( ( ( 𝑑 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ↔ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) |
72 |
68 71
|
anbi12d |
⊢ ( ℎ = 𝑒 → ( ( ( 𝑑 gcd ℎ ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ↔ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ) |
73 |
72
|
anbi2d |
⊢ ( ℎ = 𝑒 → ( ( ¬ 2 ∥ 𝑑 ∧ ( ( 𝑑 gcd ℎ ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ↔ ( ¬ 2 ∥ 𝑑 ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ) ) |
74 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) → 𝑑 ∈ ℕ ) |
75 |
74
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑑 ) → 𝑑 ∈ ℕ ) |
76 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) → 𝑒 ∈ ℕ ) |
77 |
76
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑑 ) → 𝑒 ∈ ℕ ) |
78 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑑 ) → ¬ 2 ∥ 𝑑 ) |
79 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑑 ) → ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) |
80 |
78 79
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑑 ) → ( ¬ 2 ∥ 𝑑 ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ) |
81 |
66 73 75 77 80
|
2rspcedvdw |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑑 ) → ∃ 𝑔 ∈ ℕ ∃ ℎ ∈ ℕ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ) |
82 |
|
breq2 |
⊢ ( 𝑔 = 𝑒 → ( 2 ∥ 𝑔 ↔ 2 ∥ 𝑒 ) ) |
83 |
82
|
notbid |
⊢ ( 𝑔 = 𝑒 → ( ¬ 2 ∥ 𝑔 ↔ ¬ 2 ∥ 𝑒 ) ) |
84 |
|
oveq1 |
⊢ ( 𝑔 = 𝑒 → ( 𝑔 gcd ℎ ) = ( 𝑒 gcd ℎ ) ) |
85 |
84
|
eqeq1d |
⊢ ( 𝑔 = 𝑒 → ( ( 𝑔 gcd ℎ ) = 1 ↔ ( 𝑒 gcd ℎ ) = 1 ) ) |
86 |
|
oveq1 |
⊢ ( 𝑔 = 𝑒 → ( 𝑔 ↑ 4 ) = ( 𝑒 ↑ 4 ) ) |
87 |
86
|
oveq1d |
⊢ ( 𝑔 = 𝑒 → ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( ( 𝑒 ↑ 4 ) + ( ℎ ↑ 4 ) ) ) |
88 |
87
|
eqeq1d |
⊢ ( 𝑔 = 𝑒 → ( ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ↔ ( ( 𝑒 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) |
89 |
85 88
|
anbi12d |
⊢ ( 𝑔 = 𝑒 → ( ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ↔ ( ( 𝑒 gcd ℎ ) = 1 ∧ ( ( 𝑒 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ) |
90 |
83 89
|
anbi12d |
⊢ ( 𝑔 = 𝑒 → ( ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ↔ ( ¬ 2 ∥ 𝑒 ∧ ( ( 𝑒 gcd ℎ ) = 1 ∧ ( ( 𝑒 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ) ) |
91 |
|
oveq2 |
⊢ ( ℎ = 𝑑 → ( 𝑒 gcd ℎ ) = ( 𝑒 gcd 𝑑 ) ) |
92 |
91
|
eqeq1d |
⊢ ( ℎ = 𝑑 → ( ( 𝑒 gcd ℎ ) = 1 ↔ ( 𝑒 gcd 𝑑 ) = 1 ) ) |
93 |
|
oveq1 |
⊢ ( ℎ = 𝑑 → ( ℎ ↑ 4 ) = ( 𝑑 ↑ 4 ) ) |
94 |
93
|
oveq2d |
⊢ ( ℎ = 𝑑 → ( ( 𝑒 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( ( 𝑒 ↑ 4 ) + ( 𝑑 ↑ 4 ) ) ) |
95 |
94
|
eqeq1d |
⊢ ( ℎ = 𝑑 → ( ( ( 𝑒 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ↔ ( ( 𝑒 ↑ 4 ) + ( 𝑑 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) |
96 |
92 95
|
anbi12d |
⊢ ( ℎ = 𝑑 → ( ( ( 𝑒 gcd ℎ ) = 1 ∧ ( ( 𝑒 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ↔ ( ( 𝑒 gcd 𝑑 ) = 1 ∧ ( ( 𝑒 ↑ 4 ) + ( 𝑑 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ) |
97 |
96
|
anbi2d |
⊢ ( ℎ = 𝑑 → ( ( ¬ 2 ∥ 𝑒 ∧ ( ( 𝑒 gcd ℎ ) = 1 ∧ ( ( 𝑒 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ↔ ( ¬ 2 ∥ 𝑒 ∧ ( ( 𝑒 gcd 𝑑 ) = 1 ∧ ( ( 𝑒 ↑ 4 ) + ( 𝑑 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ) ) |
98 |
76
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑒 ) → 𝑒 ∈ ℕ ) |
99 |
74
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑒 ) → 𝑑 ∈ ℕ ) |
100 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑒 ) → ¬ 2 ∥ 𝑒 ) |
101 |
98
|
nnzd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑒 ) → 𝑒 ∈ ℤ ) |
102 |
99
|
nnzd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑒 ) → 𝑑 ∈ ℤ ) |
103 |
101 102
|
gcdcomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑒 ) → ( 𝑒 gcd 𝑑 ) = ( 𝑑 gcd 𝑒 ) ) |
104 |
|
simplrl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑒 ) → ( 𝑑 gcd 𝑒 ) = 1 ) |
105 |
103 104
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑒 ) → ( 𝑒 gcd 𝑑 ) = 1 ) |
106 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
107 |
106
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑒 ) → 4 ∈ ℕ0 ) |
108 |
98 107
|
nnexpcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑒 ) → ( 𝑒 ↑ 4 ) ∈ ℕ ) |
109 |
108
|
nncnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑒 ) → ( 𝑒 ↑ 4 ) ∈ ℂ ) |
110 |
99 107
|
nnexpcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑒 ) → ( 𝑑 ↑ 4 ) ∈ ℕ ) |
111 |
110
|
nncnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑒 ) → ( 𝑑 ↑ 4 ) ∈ ℂ ) |
112 |
109 111
|
addcomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑒 ) → ( ( 𝑒 ↑ 4 ) + ( 𝑑 ↑ 4 ) ) = ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) ) |
113 |
|
simplrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑒 ) → ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) |
114 |
112 113
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑒 ) → ( ( 𝑒 ↑ 4 ) + ( 𝑑 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) |
115 |
100 105 114
|
jca32 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑒 ) → ( ¬ 2 ∥ 𝑒 ∧ ( ( 𝑒 gcd 𝑑 ) = 1 ∧ ( ( 𝑒 ↑ 4 ) + ( 𝑑 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ) |
116 |
90 97 98 99 115
|
2rspcedvdw |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑒 ) → ∃ 𝑔 ∈ ℕ ∃ ℎ ∈ ℕ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ) |
117 |
74
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ 2 ∥ 𝑑 ) → 𝑑 ∈ ℕ ) |
118 |
117
|
nnsqcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ 2 ∥ 𝑑 ) → ( 𝑑 ↑ 2 ) ∈ ℕ ) |
119 |
76
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ 2 ∥ 𝑑 ) → 𝑒 ∈ ℕ ) |
120 |
119
|
nnsqcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ 2 ∥ 𝑑 ) → ( 𝑒 ↑ 2 ) ∈ ℕ ) |
121 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ 2 ∥ 𝑑 ) → 𝑓 ∈ ℕ ) |
122 |
|
2z |
⊢ 2 ∈ ℤ |
123 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) → 𝑑 ∈ ℕ ) |
124 |
123
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) → 𝑑 ∈ ℤ ) |
125 |
|
2nn |
⊢ 2 ∈ ℕ |
126 |
125
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) → 2 ∈ ℕ ) |
127 |
|
dvdsexp2im |
⊢ ( ( 2 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 2 ∈ ℕ ) → ( 2 ∥ 𝑑 → 2 ∥ ( 𝑑 ↑ 2 ) ) ) |
128 |
122 124 126 127
|
mp3an2i |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) → ( 2 ∥ 𝑑 → 2 ∥ ( 𝑑 ↑ 2 ) ) ) |
129 |
128
|
imp |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ 2 ∥ 𝑑 ) → 2 ∥ ( 𝑑 ↑ 2 ) ) |
130 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
131 |
130
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ 2 ∥ 𝑑 ) → 2 ∈ ℕ0 ) |
132 |
117
|
nncnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ 2 ∥ 𝑑 ) → 𝑑 ∈ ℂ ) |
133 |
132
|
flt4lem |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ 2 ∥ 𝑑 ) → ( 𝑑 ↑ 4 ) = ( ( 𝑑 ↑ 2 ) ↑ 2 ) ) |
134 |
119
|
nncnd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ 2 ∥ 𝑑 ) → 𝑒 ∈ ℂ ) |
135 |
134
|
flt4lem |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ 2 ∥ 𝑑 ) → ( 𝑒 ↑ 4 ) = ( ( 𝑒 ↑ 2 ) ↑ 2 ) ) |
136 |
133 135
|
oveq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ 2 ∥ 𝑑 ) → ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( ( ( 𝑑 ↑ 2 ) ↑ 2 ) + ( ( 𝑒 ↑ 2 ) ↑ 2 ) ) ) |
137 |
|
simplrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ 2 ∥ 𝑑 ) → ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) |
138 |
136 137
|
eqtr3d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ 2 ∥ 𝑑 ) → ( ( ( 𝑑 ↑ 2 ) ↑ 2 ) + ( ( 𝑒 ↑ 2 ) ↑ 2 ) ) = ( 𝑓 ↑ 2 ) ) |
139 |
|
simplrl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ 2 ∥ 𝑑 ) → ( 𝑑 gcd 𝑒 ) = 1 ) |
140 |
125
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ 2 ∥ 𝑑 ) → 2 ∈ ℕ ) |
141 |
|
rppwr |
⊢ ( ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ∧ 2 ∈ ℕ ) → ( ( 𝑑 gcd 𝑒 ) = 1 → ( ( 𝑑 ↑ 2 ) gcd ( 𝑒 ↑ 2 ) ) = 1 ) ) |
142 |
117 119 140 141
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ 2 ∥ 𝑑 ) → ( ( 𝑑 gcd 𝑒 ) = 1 → ( ( 𝑑 ↑ 2 ) gcd ( 𝑒 ↑ 2 ) ) = 1 ) ) |
143 |
139 142
|
mpd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ 2 ∥ 𝑑 ) → ( ( 𝑑 ↑ 2 ) gcd ( 𝑒 ↑ 2 ) ) = 1 ) |
144 |
118 120 121 131 138 143
|
fltaccoprm |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ 2 ∥ 𝑑 ) → ( ( 𝑑 ↑ 2 ) gcd 𝑓 ) = 1 ) |
145 |
118 120 121 129 144 138
|
flt4lem2 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ 2 ∥ 𝑑 ) → ¬ 2 ∥ ( 𝑒 ↑ 2 ) ) |
146 |
119
|
nnzd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ 2 ∥ 𝑑 ) → 𝑒 ∈ ℤ ) |
147 |
|
dvdsexp2im |
⊢ ( ( 2 ∈ ℤ ∧ 𝑒 ∈ ℤ ∧ 2 ∈ ℕ ) → ( 2 ∥ 𝑒 → 2 ∥ ( 𝑒 ↑ 2 ) ) ) |
148 |
122 146 140 147
|
mp3an2i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ 2 ∥ 𝑑 ) → ( 2 ∥ 𝑒 → 2 ∥ ( 𝑒 ↑ 2 ) ) ) |
149 |
145 148
|
mtod |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ∧ 2 ∥ 𝑑 ) → ¬ 2 ∥ 𝑒 ) |
150 |
149
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) → ( 2 ∥ 𝑑 → ¬ 2 ∥ 𝑒 ) ) |
151 |
|
imor |
⊢ ( ( 2 ∥ 𝑑 → ¬ 2 ∥ 𝑒 ) ↔ ( ¬ 2 ∥ 𝑑 ∨ ¬ 2 ∥ 𝑒 ) ) |
152 |
150 151
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) → ( ¬ 2 ∥ 𝑑 ∨ ¬ 2 ∥ 𝑒 ) ) |
153 |
81 116 152
|
mpjaodan |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) ∧ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) → ∃ 𝑔 ∈ ℕ ∃ ℎ ∈ ℕ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ) |
154 |
153
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) ∧ ( 𝑑 ∈ ℕ ∧ 𝑒 ∈ ℕ ) ) → ( ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) → ∃ 𝑔 ∈ ℕ ∃ ℎ ∈ ℕ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ) ) |
155 |
154
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℕ ) → ( ∃ 𝑑 ∈ ℕ ∃ 𝑒 ∈ ℕ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) → ∃ 𝑔 ∈ ℕ ∃ ℎ ∈ ℕ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ) ) |
156 |
155
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑓 ∈ ℕ ∃ 𝑑 ∈ ℕ ∃ 𝑒 ∈ ℕ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) → ∃ 𝑓 ∈ ℕ ∃ 𝑔 ∈ ℕ ∃ ℎ ∈ ℕ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ) ) |
157 |
156
|
con3d |
⊢ ( 𝜑 → ( ¬ ∃ 𝑓 ∈ ℕ ∃ 𝑔 ∈ ℕ ∃ ℎ ∈ ℕ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) → ¬ ∃ 𝑓 ∈ ℕ ∃ 𝑑 ∈ ℕ ∃ 𝑒 ∈ ℕ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ) |
158 |
|
ralnex |
⊢ ( ∀ 𝑓 ∈ ℕ ¬ ∃ 𝑔 ∈ ℕ ∃ ℎ ∈ ℕ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ↔ ¬ ∃ 𝑓 ∈ ℕ ∃ 𝑔 ∈ ℕ ∃ ℎ ∈ ℕ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ) |
159 |
|
ralnex |
⊢ ( ∀ 𝑓 ∈ ℕ ¬ ∃ 𝑑 ∈ ℕ ∃ 𝑒 ∈ ℕ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ↔ ¬ ∃ 𝑓 ∈ ℕ ∃ 𝑑 ∈ ℕ ∃ 𝑒 ∈ ℕ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) |
160 |
157 158 159
|
3imtr4g |
⊢ ( 𝜑 → ( ∀ 𝑓 ∈ ℕ ¬ ∃ 𝑔 ∈ ℕ ∃ ℎ ∈ ℕ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) → ∀ 𝑓 ∈ ℕ ¬ ∃ 𝑑 ∈ ℕ ∃ 𝑒 ∈ ℕ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ) |
161 |
|
rabeq0 |
⊢ ( { 𝑓 ∈ ℕ ∣ ∃ 𝑔 ∈ ℕ ∃ ℎ ∈ ℕ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) } = ∅ ↔ ∀ 𝑓 ∈ ℕ ¬ ∃ 𝑔 ∈ ℕ ∃ ℎ ∈ ℕ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ) |
162 |
|
rabeq0 |
⊢ ( { 𝑓 ∈ ℕ ∣ ∃ 𝑑 ∈ ℕ ∃ 𝑒 ∈ ℕ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) } = ∅ ↔ ∀ 𝑓 ∈ ℕ ¬ ∃ 𝑑 ∈ ℕ ∃ 𝑒 ∈ ℕ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) |
163 |
160 161 162
|
3imtr4g |
⊢ ( 𝜑 → ( { 𝑓 ∈ ℕ ∣ ∃ 𝑔 ∈ ℕ ∃ ℎ ∈ ℕ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) } = ∅ → { 𝑓 ∈ ℕ ∣ ∃ 𝑑 ∈ ℕ ∃ 𝑒 ∈ ℕ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) } = ∅ ) ) |
164 |
57 163
|
mpd |
⊢ ( 𝜑 → { 𝑓 ∈ ℕ ∣ ∃ 𝑑 ∈ ℕ ∃ 𝑒 ∈ ℕ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) } = ∅ ) |
165 |
|
oveq1 |
⊢ ( 𝑓 = ( 𝑐 / ( ( 𝑎 gcd 𝑏 ) ↑ 2 ) ) → ( 𝑓 ↑ 2 ) = ( ( 𝑐 / ( ( 𝑎 gcd 𝑏 ) ↑ 2 ) ) ↑ 2 ) ) |
166 |
165
|
eqeq2d |
⊢ ( 𝑓 = ( 𝑐 / ( ( 𝑎 gcd 𝑏 ) ↑ 2 ) ) → ( ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ↔ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( ( 𝑐 / ( ( 𝑎 gcd 𝑏 ) ↑ 2 ) ) ↑ 2 ) ) ) |
167 |
166
|
anbi2d |
⊢ ( 𝑓 = ( 𝑐 / ( ( 𝑎 gcd 𝑏 ) ↑ 2 ) ) → ( ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ↔ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( ( 𝑐 / ( ( 𝑎 gcd 𝑏 ) ↑ 2 ) ) ↑ 2 ) ) ) ) |
168 |
|
oveq1 |
⊢ ( 𝑑 = ( 𝑎 / ( 𝑎 gcd 𝑏 ) ) → ( 𝑑 gcd 𝑒 ) = ( ( 𝑎 / ( 𝑎 gcd 𝑏 ) ) gcd 𝑒 ) ) |
169 |
168
|
eqeq1d |
⊢ ( 𝑑 = ( 𝑎 / ( 𝑎 gcd 𝑏 ) ) → ( ( 𝑑 gcd 𝑒 ) = 1 ↔ ( ( 𝑎 / ( 𝑎 gcd 𝑏 ) ) gcd 𝑒 ) = 1 ) ) |
170 |
|
oveq1 |
⊢ ( 𝑑 = ( 𝑎 / ( 𝑎 gcd 𝑏 ) ) → ( 𝑑 ↑ 4 ) = ( ( 𝑎 / ( 𝑎 gcd 𝑏 ) ) ↑ 4 ) ) |
171 |
170
|
oveq1d |
⊢ ( 𝑑 = ( 𝑎 / ( 𝑎 gcd 𝑏 ) ) → ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( ( ( 𝑎 / ( 𝑎 gcd 𝑏 ) ) ↑ 4 ) + ( 𝑒 ↑ 4 ) ) ) |
172 |
171
|
eqeq1d |
⊢ ( 𝑑 = ( 𝑎 / ( 𝑎 gcd 𝑏 ) ) → ( ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( ( 𝑐 / ( ( 𝑎 gcd 𝑏 ) ↑ 2 ) ) ↑ 2 ) ↔ ( ( ( 𝑎 / ( 𝑎 gcd 𝑏 ) ) ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( ( 𝑐 / ( ( 𝑎 gcd 𝑏 ) ↑ 2 ) ) ↑ 2 ) ) ) |
173 |
169 172
|
anbi12d |
⊢ ( 𝑑 = ( 𝑎 / ( 𝑎 gcd 𝑏 ) ) → ( ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( ( 𝑐 / ( ( 𝑎 gcd 𝑏 ) ↑ 2 ) ) ↑ 2 ) ) ↔ ( ( ( 𝑎 / ( 𝑎 gcd 𝑏 ) ) gcd 𝑒 ) = 1 ∧ ( ( ( 𝑎 / ( 𝑎 gcd 𝑏 ) ) ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( ( 𝑐 / ( ( 𝑎 gcd 𝑏 ) ↑ 2 ) ) ↑ 2 ) ) ) ) |
174 |
|
oveq2 |
⊢ ( 𝑒 = ( 𝑏 / ( 𝑎 gcd 𝑏 ) ) → ( ( 𝑎 / ( 𝑎 gcd 𝑏 ) ) gcd 𝑒 ) = ( ( 𝑎 / ( 𝑎 gcd 𝑏 ) ) gcd ( 𝑏 / ( 𝑎 gcd 𝑏 ) ) ) ) |
175 |
174
|
eqeq1d |
⊢ ( 𝑒 = ( 𝑏 / ( 𝑎 gcd 𝑏 ) ) → ( ( ( 𝑎 / ( 𝑎 gcd 𝑏 ) ) gcd 𝑒 ) = 1 ↔ ( ( 𝑎 / ( 𝑎 gcd 𝑏 ) ) gcd ( 𝑏 / ( 𝑎 gcd 𝑏 ) ) ) = 1 ) ) |
176 |
|
oveq1 |
⊢ ( 𝑒 = ( 𝑏 / ( 𝑎 gcd 𝑏 ) ) → ( 𝑒 ↑ 4 ) = ( ( 𝑏 / ( 𝑎 gcd 𝑏 ) ) ↑ 4 ) ) |
177 |
176
|
oveq2d |
⊢ ( 𝑒 = ( 𝑏 / ( 𝑎 gcd 𝑏 ) ) → ( ( ( 𝑎 / ( 𝑎 gcd 𝑏 ) ) ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( ( ( 𝑎 / ( 𝑎 gcd 𝑏 ) ) ↑ 4 ) + ( ( 𝑏 / ( 𝑎 gcd 𝑏 ) ) ↑ 4 ) ) ) |
178 |
177
|
eqeq1d |
⊢ ( 𝑒 = ( 𝑏 / ( 𝑎 gcd 𝑏 ) ) → ( ( ( ( 𝑎 / ( 𝑎 gcd 𝑏 ) ) ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( ( 𝑐 / ( ( 𝑎 gcd 𝑏 ) ↑ 2 ) ) ↑ 2 ) ↔ ( ( ( 𝑎 / ( 𝑎 gcd 𝑏 ) ) ↑ 4 ) + ( ( 𝑏 / ( 𝑎 gcd 𝑏 ) ) ↑ 4 ) ) = ( ( 𝑐 / ( ( 𝑎 gcd 𝑏 ) ↑ 2 ) ) ↑ 2 ) ) ) |
179 |
175 178
|
anbi12d |
⊢ ( 𝑒 = ( 𝑏 / ( 𝑎 gcd 𝑏 ) ) → ( ( ( ( 𝑎 / ( 𝑎 gcd 𝑏 ) ) gcd 𝑒 ) = 1 ∧ ( ( ( 𝑎 / ( 𝑎 gcd 𝑏 ) ) ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( ( 𝑐 / ( ( 𝑎 gcd 𝑏 ) ↑ 2 ) ) ↑ 2 ) ) ↔ ( ( ( 𝑎 / ( 𝑎 gcd 𝑏 ) ) gcd ( 𝑏 / ( 𝑎 gcd 𝑏 ) ) ) = 1 ∧ ( ( ( 𝑎 / ( 𝑎 gcd 𝑏 ) ) ↑ 4 ) + ( ( 𝑏 / ( 𝑎 gcd 𝑏 ) ) ↑ 4 ) ) = ( ( 𝑐 / ( ( 𝑎 gcd 𝑏 ) ↑ 2 ) ) ↑ 2 ) ) ) ) |
180 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ℕ ∧ 𝑎 ∈ ℕ ) ) ∧ ( 𝑏 ∈ ℕ ∧ ( ( 𝑎 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ) ) → 𝑎 ∈ ℕ ) |
181 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ℕ ∧ 𝑎 ∈ ℕ ) ) ∧ ( 𝑏 ∈ ℕ ∧ ( ( 𝑎 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ) ) → 𝑏 ∈ ℕ ) |
182 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ℕ ∧ 𝑎 ∈ ℕ ) ) ∧ ( 𝑏 ∈ ℕ ∧ ( ( 𝑎 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ) ) → 𝑐 ∈ ℕ ) |
183 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ℕ ∧ 𝑎 ∈ ℕ ) ) ∧ ( 𝑏 ∈ ℕ ∧ ( ( 𝑎 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ) ) → ( ( 𝑎 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ) |
184 |
180 181 182 183
|
flt4lem6 |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ℕ ∧ 𝑎 ∈ ℕ ) ) ∧ ( 𝑏 ∈ ℕ ∧ ( ( 𝑎 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ) ) → ( ( ( 𝑎 / ( 𝑎 gcd 𝑏 ) ) ∈ ℕ ∧ ( 𝑏 / ( 𝑎 gcd 𝑏 ) ) ∈ ℕ ∧ ( 𝑐 / ( ( 𝑎 gcd 𝑏 ) ↑ 2 ) ) ∈ ℕ ) ∧ ( ( ( 𝑎 / ( 𝑎 gcd 𝑏 ) ) ↑ 4 ) + ( ( 𝑏 / ( 𝑎 gcd 𝑏 ) ) ↑ 4 ) ) = ( ( 𝑐 / ( ( 𝑎 gcd 𝑏 ) ↑ 2 ) ) ↑ 2 ) ) ) |
185 |
184
|
simpld |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ℕ ∧ 𝑎 ∈ ℕ ) ) ∧ ( 𝑏 ∈ ℕ ∧ ( ( 𝑎 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ) ) → ( ( 𝑎 / ( 𝑎 gcd 𝑏 ) ) ∈ ℕ ∧ ( 𝑏 / ( 𝑎 gcd 𝑏 ) ) ∈ ℕ ∧ ( 𝑐 / ( ( 𝑎 gcd 𝑏 ) ↑ 2 ) ) ∈ ℕ ) ) |
186 |
185
|
simp3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ℕ ∧ 𝑎 ∈ ℕ ) ) ∧ ( 𝑏 ∈ ℕ ∧ ( ( 𝑎 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ) ) → ( 𝑐 / ( ( 𝑎 gcd 𝑏 ) ↑ 2 ) ) ∈ ℕ ) |
187 |
185
|
simp1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ℕ ∧ 𝑎 ∈ ℕ ) ) ∧ ( 𝑏 ∈ ℕ ∧ ( ( 𝑎 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ) ) → ( 𝑎 / ( 𝑎 gcd 𝑏 ) ) ∈ ℕ ) |
188 |
185
|
simp2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ℕ ∧ 𝑎 ∈ ℕ ) ) ∧ ( 𝑏 ∈ ℕ ∧ ( ( 𝑎 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ) ) → ( 𝑏 / ( 𝑎 gcd 𝑏 ) ) ∈ ℕ ) |
189 |
180
|
nnzd |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ℕ ∧ 𝑎 ∈ ℕ ) ) ∧ ( 𝑏 ∈ ℕ ∧ ( ( 𝑎 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ) ) → 𝑎 ∈ ℤ ) |
190 |
181
|
nnzd |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ℕ ∧ 𝑎 ∈ ℕ ) ) ∧ ( 𝑏 ∈ ℕ ∧ ( ( 𝑎 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ) ) → 𝑏 ∈ ℤ ) |
191 |
181
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ℕ ∧ 𝑎 ∈ ℕ ) ) ∧ ( 𝑏 ∈ ℕ ∧ ( ( 𝑎 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ) ) → 𝑏 ≠ 0 ) |
192 |
|
divgcdcoprm0 |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑏 ≠ 0 ) → ( ( 𝑎 / ( 𝑎 gcd 𝑏 ) ) gcd ( 𝑏 / ( 𝑎 gcd 𝑏 ) ) ) = 1 ) |
193 |
189 190 191 192
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ℕ ∧ 𝑎 ∈ ℕ ) ) ∧ ( 𝑏 ∈ ℕ ∧ ( ( 𝑎 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ) ) → ( ( 𝑎 / ( 𝑎 gcd 𝑏 ) ) gcd ( 𝑏 / ( 𝑎 gcd 𝑏 ) ) ) = 1 ) |
194 |
184
|
simprd |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ℕ ∧ 𝑎 ∈ ℕ ) ) ∧ ( 𝑏 ∈ ℕ ∧ ( ( 𝑎 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ) ) → ( ( ( 𝑎 / ( 𝑎 gcd 𝑏 ) ) ↑ 4 ) + ( ( 𝑏 / ( 𝑎 gcd 𝑏 ) ) ↑ 4 ) ) = ( ( 𝑐 / ( ( 𝑎 gcd 𝑏 ) ↑ 2 ) ) ↑ 2 ) ) |
195 |
193 194
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ℕ ∧ 𝑎 ∈ ℕ ) ) ∧ ( 𝑏 ∈ ℕ ∧ ( ( 𝑎 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ) ) → ( ( ( 𝑎 / ( 𝑎 gcd 𝑏 ) ) gcd ( 𝑏 / ( 𝑎 gcd 𝑏 ) ) ) = 1 ∧ ( ( ( 𝑎 / ( 𝑎 gcd 𝑏 ) ) ↑ 4 ) + ( ( 𝑏 / ( 𝑎 gcd 𝑏 ) ) ↑ 4 ) ) = ( ( 𝑐 / ( ( 𝑎 gcd 𝑏 ) ↑ 2 ) ) ↑ 2 ) ) ) |
196 |
167 173 179 186 187 188 195
|
3rspcedvdw |
⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ ℕ ∧ 𝑎 ∈ ℕ ) ) ∧ ( 𝑏 ∈ ℕ ∧ ( ( 𝑎 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ) ) → ∃ 𝑓 ∈ ℕ ∃ 𝑑 ∈ ℕ ∃ 𝑒 ∈ ℕ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) |
197 |
196
|
rexlimdvaa |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ℕ ∧ 𝑎 ∈ ℕ ) ) → ( ∃ 𝑏 ∈ ℕ ( ( 𝑎 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) → ∃ 𝑓 ∈ ℕ ∃ 𝑑 ∈ ℕ ∃ 𝑒 ∈ ℕ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ) |
198 |
197
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ ℕ ∃ 𝑎 ∈ ℕ ∃ 𝑏 ∈ ℕ ( ( 𝑎 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) → ∃ 𝑓 ∈ ℕ ∃ 𝑑 ∈ ℕ ∃ 𝑒 ∈ ℕ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) ) ) |
199 |
198
|
con3d |
⊢ ( 𝜑 → ( ¬ ∃ 𝑓 ∈ ℕ ∃ 𝑑 ∈ ℕ ∃ 𝑒 ∈ ℕ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) → ¬ ∃ 𝑐 ∈ ℕ ∃ 𝑎 ∈ ℕ ∃ 𝑏 ∈ ℕ ( ( 𝑎 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ) ) |
200 |
|
ralnex |
⊢ ( ∀ 𝑐 ∈ ℕ ¬ ∃ 𝑎 ∈ ℕ ∃ 𝑏 ∈ ℕ ( ( 𝑎 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ↔ ¬ ∃ 𝑐 ∈ ℕ ∃ 𝑎 ∈ ℕ ∃ 𝑏 ∈ ℕ ( ( 𝑎 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ) |
201 |
199 159 200
|
3imtr4g |
⊢ ( 𝜑 → ( ∀ 𝑓 ∈ ℕ ¬ ∃ 𝑑 ∈ ℕ ∃ 𝑒 ∈ ℕ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) → ∀ 𝑐 ∈ ℕ ¬ ∃ 𝑎 ∈ ℕ ∃ 𝑏 ∈ ℕ ( ( 𝑎 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ) ) |
202 |
|
rabeq0 |
⊢ ( { 𝑐 ∈ ℕ ∣ ∃ 𝑎 ∈ ℕ ∃ 𝑏 ∈ ℕ ( ( 𝑎 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) } = ∅ ↔ ∀ 𝑐 ∈ ℕ ¬ ∃ 𝑎 ∈ ℕ ∃ 𝑏 ∈ ℕ ( ( 𝑎 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ) |
203 |
201 162 202
|
3imtr4g |
⊢ ( 𝜑 → ( { 𝑓 ∈ ℕ ∣ ∃ 𝑑 ∈ ℕ ∃ 𝑒 ∈ ℕ ( ( 𝑑 gcd 𝑒 ) = 1 ∧ ( ( 𝑑 ↑ 4 ) + ( 𝑒 ↑ 4 ) ) = ( 𝑓 ↑ 2 ) ) } = ∅ → { 𝑐 ∈ ℕ ∣ ∃ 𝑎 ∈ ℕ ∃ 𝑏 ∈ ℕ ( ( 𝑎 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) } = ∅ ) ) |
204 |
164 203
|
mpd |
⊢ ( 𝜑 → { 𝑐 ∈ ℕ ∣ ∃ 𝑎 ∈ ℕ ∃ 𝑏 ∈ ℕ ( ( 𝑎 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) } = ∅ ) |
205 |
|
sseq0 |
⊢ ( ( { 𝑐 ∈ ℕ ∣ ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) } ⊆ { 𝑐 ∈ ℕ ∣ ∃ 𝑎 ∈ ℕ ∃ 𝑏 ∈ ℕ ( ( 𝑎 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) } ∧ { 𝑐 ∈ ℕ ∣ ∃ 𝑎 ∈ ℕ ∃ 𝑏 ∈ ℕ ( ( 𝑎 ↑ 4 ) + ( 𝑏 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) } = ∅ ) → { 𝑐 ∈ ℕ ∣ ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) } = ∅ ) |
206 |
15 204 205
|
syl2anc |
⊢ ( 𝜑 → { 𝑐 ∈ ℕ ∣ ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) } = ∅ ) |
207 |
|
rabeq0 |
⊢ ( { 𝑐 ∈ ℕ ∣ ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) } = ∅ ↔ ∀ 𝑐 ∈ ℕ ¬ ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ) |
208 |
206 207
|
sylib |
⊢ ( 𝜑 → ∀ 𝑐 ∈ ℕ ¬ ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ) |
209 |
|
oveq1 |
⊢ ( 𝑐 = 𝐶 → ( 𝑐 ↑ 2 ) = ( 𝐶 ↑ 2 ) ) |
210 |
209
|
eqeq2d |
⊢ ( 𝑐 = 𝐶 → ( ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ↔ ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) = ( 𝐶 ↑ 2 ) ) ) |
211 |
210
|
necon3bbid |
⊢ ( 𝑐 = 𝐶 → ( ¬ ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) ↔ ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) ≠ ( 𝐶 ↑ 2 ) ) ) |
212 |
211
|
rspcv |
⊢ ( 𝐶 ∈ ℕ → ( ∀ 𝑐 ∈ ℕ ¬ ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) = ( 𝑐 ↑ 2 ) → ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) ≠ ( 𝐶 ↑ 2 ) ) ) |
213 |
3 208 212
|
sylc |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) ≠ ( 𝐶 ↑ 2 ) ) |