| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flt4lem7.a |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |
| 2 |
|
flt4lem7.b |
⊢ ( 𝜑 → 𝐵 ∈ ℕ ) |
| 3 |
|
flt4lem7.c |
⊢ ( 𝜑 → 𝐶 ∈ ℕ ) |
| 4 |
|
flt4lem7.1 |
⊢ ( 𝜑 → ¬ 2 ∥ 𝐴 ) |
| 5 |
|
flt4lem7.2 |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) = 1 ) |
| 6 |
|
flt4lem7.3 |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) = ( 𝐶 ↑ 2 ) ) |
| 7 |
|
breq1 |
⊢ ( 𝑙 = ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) → ( 𝑙 < 𝐶 ↔ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) < 𝐶 ) ) |
| 8 |
|
oveq1 |
⊢ ( 𝑙 = ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) → ( 𝑙 ↑ 2 ) = ( ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 2 ) ) |
| 9 |
8
|
eqeq2d |
⊢ ( 𝑙 = ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) → ( ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ↔ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 2 ) ) ) |
| 10 |
9
|
anbi2d |
⊢ ( 𝑙 = ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) → ( ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ↔ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 2 ) ) ) ) |
| 11 |
10
|
2rexbidv |
⊢ ( 𝑙 = ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) → ( ∃ 𝑚 ∈ ℕ ∃ 𝑛 ∈ ℕ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ↔ ∃ 𝑚 ∈ ℕ ∃ 𝑛 ∈ ℕ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 2 ) ) ) ) |
| 12 |
7 11
|
anbi12d |
⊢ ( 𝑙 = ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) → ( ( 𝑙 < 𝐶 ∧ ∃ 𝑚 ∈ ℕ ∃ 𝑛 ∈ ℕ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ↔ ( ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) < 𝐶 ∧ ∃ 𝑚 ∈ ℕ ∃ 𝑛 ∈ ℕ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 2 ) ) ) ) ) |
| 13 |
|
eqid |
⊢ ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) = ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) |
| 14 |
|
eqid |
⊢ ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) = ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) |
| 15 |
|
eqid |
⊢ ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) = ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) |
| 16 |
|
eqid |
⊢ ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) = ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) |
| 17 |
1
|
nnsqcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℕ ) |
| 18 |
2
|
nnsqcld |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℕ ) |
| 19 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 20 |
19
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ0 ) |
| 21 |
1
|
nncnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 22 |
21
|
flt4lem |
⊢ ( 𝜑 → ( 𝐴 ↑ 4 ) = ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) |
| 23 |
2
|
nncnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 24 |
23
|
flt4lem |
⊢ ( 𝜑 → ( 𝐵 ↑ 4 ) = ( ( 𝐵 ↑ 2 ) ↑ 2 ) ) |
| 25 |
22 24
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) = ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) + ( ( 𝐵 ↑ 2 ) ↑ 2 ) ) ) |
| 26 |
25 6
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) + ( ( 𝐵 ↑ 2 ) ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) |
| 27 |
|
2nn |
⊢ 2 ∈ ℕ |
| 28 |
27
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ ) |
| 29 |
|
rppwr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 2 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) = 1 → ( ( 𝐴 ↑ 2 ) gcd ( 𝐵 ↑ 2 ) ) = 1 ) ) |
| 30 |
1 2 28 29
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) = 1 → ( ( 𝐴 ↑ 2 ) gcd ( 𝐵 ↑ 2 ) ) = 1 ) ) |
| 31 |
5 30
|
mpd |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) gcd ( 𝐵 ↑ 2 ) ) = 1 ) |
| 32 |
17 18 3 20 26 31
|
fltaccoprm |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) gcd 𝐶 ) = 1 ) |
| 33 |
1
|
nnzd |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
| 34 |
3
|
nnzd |
⊢ ( 𝜑 → 𝐶 ∈ ℤ ) |
| 35 |
|
rpexp |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 2 ∈ ℕ ) → ( ( ( 𝐴 ↑ 2 ) gcd 𝐶 ) = 1 ↔ ( 𝐴 gcd 𝐶 ) = 1 ) ) |
| 36 |
33 34 28 35
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) gcd 𝐶 ) = 1 ↔ ( 𝐴 gcd 𝐶 ) = 1 ) ) |
| 37 |
32 36
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐶 ) = 1 ) |
| 38 |
13 14 15 16 1 2 3 4 37 6
|
flt4lem5e |
⊢ ( 𝜑 → ( ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) ) = 1 ∧ ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) = 1 ∧ ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) = 1 ) ∧ ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) ∈ ℕ ∧ ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) ∈ ℕ ∧ ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ∈ ℕ ) ∧ ( ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) · ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) · ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) ) ) = ( ( 𝐵 / 2 ) ↑ 2 ) ∧ ( 𝐵 / 2 ) ∈ ℕ ) ) ) |
| 39 |
38
|
simp2d |
⊢ ( 𝜑 → ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) ∈ ℕ ∧ ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) ∈ ℕ ∧ ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ∈ ℕ ) ) |
| 40 |
39
|
simp3d |
⊢ ( 𝜑 → ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ∈ ℕ ) |
| 41 |
38
|
simp3d |
⊢ ( 𝜑 → ( ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) · ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) · ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) ) ) = ( ( 𝐵 / 2 ) ↑ 2 ) ∧ ( 𝐵 / 2 ) ∈ ℕ ) ) |
| 42 |
41
|
simprd |
⊢ ( 𝜑 → ( 𝐵 / 2 ) ∈ ℕ ) |
| 43 |
|
gcdnncl |
⊢ ( ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ∈ ℕ ∧ ( 𝐵 / 2 ) ∈ ℕ ) → ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ∈ ℕ ) |
| 44 |
40 42 43
|
syl2anc |
⊢ ( 𝜑 → ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ∈ ℕ ) |
| 45 |
44
|
nnred |
⊢ ( 𝜑 → ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ∈ ℝ ) |
| 46 |
42
|
nnred |
⊢ ( 𝜑 → ( 𝐵 / 2 ) ∈ ℝ ) |
| 47 |
3
|
nnred |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 48 |
40
|
nnzd |
⊢ ( 𝜑 → ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ∈ ℤ ) |
| 49 |
48 42
|
gcdle2d |
⊢ ( 𝜑 → ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ≤ ( 𝐵 / 2 ) ) |
| 50 |
2
|
nnred |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 51 |
2
|
nnrpd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
| 52 |
|
rphalflt |
⊢ ( 𝐵 ∈ ℝ+ → ( 𝐵 / 2 ) < 𝐵 ) |
| 53 |
51 52
|
syl |
⊢ ( 𝜑 → ( 𝐵 / 2 ) < 𝐵 ) |
| 54 |
18
|
nnred |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℝ ) |
| 55 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
| 56 |
55
|
a1i |
⊢ ( 𝜑 → 4 ∈ ℕ0 ) |
| 57 |
2 56
|
nnexpcld |
⊢ ( 𝜑 → ( 𝐵 ↑ 4 ) ∈ ℕ ) |
| 58 |
57
|
nnred |
⊢ ( 𝜑 → ( 𝐵 ↑ 4 ) ∈ ℝ ) |
| 59 |
3
|
nnsqcld |
⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) ∈ ℕ ) |
| 60 |
59
|
nnred |
⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) ∈ ℝ ) |
| 61 |
|
2lt4 |
⊢ 2 < 4 |
| 62 |
|
2z |
⊢ 2 ∈ ℤ |
| 63 |
62
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
| 64 |
|
4z |
⊢ 4 ∈ ℤ |
| 65 |
64
|
a1i |
⊢ ( 𝜑 → 4 ∈ ℤ ) |
| 66 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 67 |
|
2re |
⊢ 2 ∈ ℝ |
| 68 |
67
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 69 |
|
1lt2 |
⊢ 1 < 2 |
| 70 |
69
|
a1i |
⊢ ( 𝜑 → 1 < 2 ) |
| 71 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
| 72 |
42
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ ( 𝐵 / 2 ) ) |
| 73 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 74 |
73
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ+ ) |
| 75 |
66 50 74
|
lemuldiv2d |
⊢ ( 𝜑 → ( ( 2 · 1 ) ≤ 𝐵 ↔ 1 ≤ ( 𝐵 / 2 ) ) ) |
| 76 |
72 75
|
mpbird |
⊢ ( 𝜑 → ( 2 · 1 ) ≤ 𝐵 ) |
| 77 |
71 76
|
eqbrtrrid |
⊢ ( 𝜑 → 2 ≤ 𝐵 ) |
| 78 |
66 68 50 70 77
|
ltletrd |
⊢ ( 𝜑 → 1 < 𝐵 ) |
| 79 |
50 63 65 78
|
ltexp2d |
⊢ ( 𝜑 → ( 2 < 4 ↔ ( 𝐵 ↑ 2 ) < ( 𝐵 ↑ 4 ) ) ) |
| 80 |
61 79
|
mpbii |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) < ( 𝐵 ↑ 4 ) ) |
| 81 |
1 56
|
nnexpcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 4 ) ∈ ℕ ) |
| 82 |
81
|
nngt0d |
⊢ ( 𝜑 → 0 < ( 𝐴 ↑ 4 ) ) |
| 83 |
81
|
nnred |
⊢ ( 𝜑 → ( 𝐴 ↑ 4 ) ∈ ℝ ) |
| 84 |
83 58
|
ltaddpos2d |
⊢ ( 𝜑 → ( 0 < ( 𝐴 ↑ 4 ) ↔ ( 𝐵 ↑ 4 ) < ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) ) ) |
| 85 |
82 84
|
mpbid |
⊢ ( 𝜑 → ( 𝐵 ↑ 4 ) < ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) ) |
| 86 |
85 6
|
breqtrd |
⊢ ( 𝜑 → ( 𝐵 ↑ 4 ) < ( 𝐶 ↑ 2 ) ) |
| 87 |
54 58 60 80 86
|
lttrd |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) < ( 𝐶 ↑ 2 ) ) |
| 88 |
3
|
nnrpd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
| 89 |
51 88 28
|
ltexp1d |
⊢ ( 𝜑 → ( 𝐵 < 𝐶 ↔ ( 𝐵 ↑ 2 ) < ( 𝐶 ↑ 2 ) ) ) |
| 90 |
87 89
|
mpbird |
⊢ ( 𝜑 → 𝐵 < 𝐶 ) |
| 91 |
46 50 47 53 90
|
lttrd |
⊢ ( 𝜑 → ( 𝐵 / 2 ) < 𝐶 ) |
| 92 |
45 46 47 49 91
|
lelttrd |
⊢ ( 𝜑 → ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) < 𝐶 ) |
| 93 |
|
oveq1 |
⊢ ( 𝑚 = ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) → ( 𝑚 gcd 𝑛 ) = ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) gcd 𝑛 ) ) |
| 94 |
93
|
eqeq1d |
⊢ ( 𝑚 = ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) → ( ( 𝑚 gcd 𝑛 ) = 1 ↔ ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) gcd 𝑛 ) = 1 ) ) |
| 95 |
|
oveq1 |
⊢ ( 𝑚 = ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) → ( 𝑚 ↑ 4 ) = ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 4 ) ) |
| 96 |
95
|
oveq1d |
⊢ ( 𝑚 = ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) → ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 4 ) + ( 𝑛 ↑ 4 ) ) ) |
| 97 |
96
|
eqeq1d |
⊢ ( 𝑚 = ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) → ( ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 2 ) ↔ ( ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 2 ) ) ) |
| 98 |
94 97
|
anbi12d |
⊢ ( 𝑚 = ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) → ( ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 2 ) ) ↔ ( ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) gcd 𝑛 ) = 1 ∧ ( ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 2 ) ) ) ) |
| 99 |
|
oveq2 |
⊢ ( 𝑛 = ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) → ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) gcd 𝑛 ) = ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) gcd ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ) ) |
| 100 |
99
|
eqeq1d |
⊢ ( 𝑛 = ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) → ( ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) gcd 𝑛 ) = 1 ↔ ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) gcd ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ) = 1 ) ) |
| 101 |
|
oveq1 |
⊢ ( 𝑛 = ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) → ( 𝑛 ↑ 4 ) = ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 4 ) ) |
| 102 |
101
|
oveq2d |
⊢ ( 𝑛 = ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) → ( ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 4 ) + ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 4 ) ) ) |
| 103 |
102
|
eqeq1d |
⊢ ( 𝑛 = ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) → ( ( ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 2 ) ↔ ( ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 4 ) + ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 4 ) ) = ( ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 2 ) ) ) |
| 104 |
100 103
|
anbi12d |
⊢ ( 𝑛 = ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) → ( ( ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) gcd 𝑛 ) = 1 ∧ ( ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 2 ) ) ↔ ( ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) gcd ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ) = 1 ∧ ( ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 4 ) + ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 4 ) ) = ( ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 2 ) ) ) ) |
| 105 |
39
|
simp1d |
⊢ ( 𝜑 → ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) ∈ ℕ ) |
| 106 |
|
gcdnncl |
⊢ ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) ∈ ℕ ∧ ( 𝐵 / 2 ) ∈ ℕ ) → ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ∈ ℕ ) |
| 107 |
105 42 106
|
syl2anc |
⊢ ( 𝜑 → ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ∈ ℕ ) |
| 108 |
39
|
simp2d |
⊢ ( 𝜑 → ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) ∈ ℕ ) |
| 109 |
|
gcdnncl |
⊢ ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) ∈ ℕ ∧ ( 𝐵 / 2 ) ∈ ℕ ) → ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ∈ ℕ ) |
| 110 |
108 42 109
|
syl2anc |
⊢ ( 𝜑 → ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ∈ ℕ ) |
| 111 |
105
|
nnzd |
⊢ ( 𝜑 → ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) ∈ ℤ ) |
| 112 |
42
|
nnzd |
⊢ ( 𝜑 → ( 𝐵 / 2 ) ∈ ℤ ) |
| 113 |
110
|
nnzd |
⊢ ( 𝜑 → ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ∈ ℤ ) |
| 114 |
|
gcdass |
⊢ ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) ∈ ℤ ∧ ( 𝐵 / 2 ) ∈ ℤ ∧ ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ∈ ℤ ) → ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) gcd ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ) = ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( ( 𝐵 / 2 ) gcd ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ) ) ) |
| 115 |
111 112 113 114
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) gcd ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ) = ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( ( 𝐵 / 2 ) gcd ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ) ) ) |
| 116 |
108
|
nnzd |
⊢ ( 𝜑 → ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) ∈ ℤ ) |
| 117 |
|
gcdass |
⊢ ( ( ( 𝐵 / 2 ) ∈ ℤ ∧ ( 𝐵 / 2 ) ∈ ℤ ∧ ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) ∈ ℤ ) → ( ( ( 𝐵 / 2 ) gcd ( 𝐵 / 2 ) ) gcd ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) ) = ( ( 𝐵 / 2 ) gcd ( ( 𝐵 / 2 ) gcd ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) ) ) ) |
| 118 |
112 112 116 117
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝐵 / 2 ) gcd ( 𝐵 / 2 ) ) gcd ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) ) = ( ( 𝐵 / 2 ) gcd ( ( 𝐵 / 2 ) gcd ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) ) ) ) |
| 119 |
42
|
nnnn0d |
⊢ ( 𝜑 → ( 𝐵 / 2 ) ∈ ℕ0 ) |
| 120 |
|
gcdnn0id |
⊢ ( ( 𝐵 / 2 ) ∈ ℕ0 → ( ( 𝐵 / 2 ) gcd ( 𝐵 / 2 ) ) = ( 𝐵 / 2 ) ) |
| 121 |
119 120
|
syl |
⊢ ( 𝜑 → ( ( 𝐵 / 2 ) gcd ( 𝐵 / 2 ) ) = ( 𝐵 / 2 ) ) |
| 122 |
121
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐵 / 2 ) gcd ( 𝐵 / 2 ) ) gcd ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) ) = ( ( 𝐵 / 2 ) gcd ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) ) ) |
| 123 |
112 116
|
gcdcomd |
⊢ ( 𝜑 → ( ( 𝐵 / 2 ) gcd ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) ) = ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ) |
| 124 |
122 123
|
eqtr2d |
⊢ ( 𝜑 → ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) = ( ( ( 𝐵 / 2 ) gcd ( 𝐵 / 2 ) ) gcd ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) ) ) |
| 125 |
116 112
|
gcdcomd |
⊢ ( 𝜑 → ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) = ( ( 𝐵 / 2 ) gcd ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) ) ) |
| 126 |
125
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐵 / 2 ) gcd ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ) = ( ( 𝐵 / 2 ) gcd ( ( 𝐵 / 2 ) gcd ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) ) ) ) |
| 127 |
118 124 126
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( 𝐵 / 2 ) gcd ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ) = ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ) |
| 128 |
127
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( ( 𝐵 / 2 ) gcd ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ) ) = ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ) ) |
| 129 |
38
|
simp1d |
⊢ ( 𝜑 → ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) ) = 1 ∧ ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) = 1 ∧ ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) = 1 ) ) |
| 130 |
129
|
simp1d |
⊢ ( 𝜑 → ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) ) = 1 ) |
| 131 |
130
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) ) gcd ( 𝐵 / 2 ) ) = ( 1 gcd ( 𝐵 / 2 ) ) ) |
| 132 |
|
gcdass |
⊢ ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) ∈ ℤ ∧ ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) ∈ ℤ ∧ ( 𝐵 / 2 ) ∈ ℤ ) → ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) ) gcd ( 𝐵 / 2 ) ) = ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ) ) |
| 133 |
111 116 112 132
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) ) gcd ( 𝐵 / 2 ) ) = ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ) ) |
| 134 |
|
1gcd |
⊢ ( ( 𝐵 / 2 ) ∈ ℤ → ( 1 gcd ( 𝐵 / 2 ) ) = 1 ) |
| 135 |
112 134
|
syl |
⊢ ( 𝜑 → ( 1 gcd ( 𝐵 / 2 ) ) = 1 ) |
| 136 |
131 133 135
|
3eqtr3d |
⊢ ( 𝜑 → ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ) = 1 ) |
| 137 |
115 128 136
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) gcd ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ) = 1 ) |
| 138 |
13 14 15 16 1 2 3 4 37 6
|
flt4lem5f |
⊢ ( 𝜑 → ( ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 2 ) = ( ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 4 ) + ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 4 ) ) ) |
| 139 |
138
|
eqcomd |
⊢ ( 𝜑 → ( ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 4 ) + ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 4 ) ) = ( ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 2 ) ) |
| 140 |
137 139
|
jca |
⊢ ( 𝜑 → ( ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) gcd ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ) = 1 ∧ ( ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) + ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 4 ) + ( ( ( ( ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) + ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) − ( √ ‘ ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) − ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 4 ) ) = ( ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 2 ) ) ) |
| 141 |
98 104 107 110 140
|
2rspcedvdw |
⊢ ( 𝜑 → ∃ 𝑚 ∈ ℕ ∃ 𝑛 ∈ ℕ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 2 ) ) ) |
| 142 |
92 141
|
jca |
⊢ ( 𝜑 → ( ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) < 𝐶 ∧ ∃ 𝑚 ∈ ℕ ∃ 𝑛 ∈ ℕ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( ( ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) gcd ( 𝐵 / 2 ) ) ↑ 2 ) ) ) ) |
| 143 |
12 44 142
|
rspcedvdw |
⊢ ( 𝜑 → ∃ 𝑙 ∈ ℕ ( 𝑙 < 𝐶 ∧ ∃ 𝑚 ∈ ℕ ∃ 𝑛 ∈ ℕ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ) |
| 144 |
|
breq2 |
⊢ ( 𝑔 = 𝑚 → ( 2 ∥ 𝑔 ↔ 2 ∥ 𝑚 ) ) |
| 145 |
144
|
notbid |
⊢ ( 𝑔 = 𝑚 → ( ¬ 2 ∥ 𝑔 ↔ ¬ 2 ∥ 𝑚 ) ) |
| 146 |
|
oveq1 |
⊢ ( 𝑔 = 𝑚 → ( 𝑔 gcd ℎ ) = ( 𝑚 gcd ℎ ) ) |
| 147 |
146
|
eqeq1d |
⊢ ( 𝑔 = 𝑚 → ( ( 𝑔 gcd ℎ ) = 1 ↔ ( 𝑚 gcd ℎ ) = 1 ) ) |
| 148 |
|
oveq1 |
⊢ ( 𝑔 = 𝑚 → ( 𝑔 ↑ 4 ) = ( 𝑚 ↑ 4 ) ) |
| 149 |
148
|
oveq1d |
⊢ ( 𝑔 = 𝑚 → ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( ( 𝑚 ↑ 4 ) + ( ℎ ↑ 4 ) ) ) |
| 150 |
149
|
eqeq1d |
⊢ ( 𝑔 = 𝑚 → ( ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ↔ ( ( 𝑚 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) |
| 151 |
147 150
|
anbi12d |
⊢ ( 𝑔 = 𝑚 → ( ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ↔ ( ( 𝑚 gcd ℎ ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ) |
| 152 |
145 151
|
anbi12d |
⊢ ( 𝑔 = 𝑚 → ( ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ↔ ( ¬ 2 ∥ 𝑚 ∧ ( ( 𝑚 gcd ℎ ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ) ) |
| 153 |
|
oveq2 |
⊢ ( ℎ = 𝑛 → ( 𝑚 gcd ℎ ) = ( 𝑚 gcd 𝑛 ) ) |
| 154 |
153
|
eqeq1d |
⊢ ( ℎ = 𝑛 → ( ( 𝑚 gcd ℎ ) = 1 ↔ ( 𝑚 gcd 𝑛 ) = 1 ) ) |
| 155 |
|
oveq1 |
⊢ ( ℎ = 𝑛 → ( ℎ ↑ 4 ) = ( 𝑛 ↑ 4 ) ) |
| 156 |
155
|
oveq2d |
⊢ ( ℎ = 𝑛 → ( ( 𝑚 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) ) |
| 157 |
156
|
eqeq1d |
⊢ ( ℎ = 𝑛 → ( ( ( 𝑚 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ↔ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) |
| 158 |
154 157
|
anbi12d |
⊢ ( ℎ = 𝑛 → ( ( ( 𝑚 gcd ℎ ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ↔ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ) |
| 159 |
158
|
anbi2d |
⊢ ( ℎ = 𝑛 → ( ( ¬ 2 ∥ 𝑚 ∧ ( ( 𝑚 gcd ℎ ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ↔ ( ¬ 2 ∥ 𝑚 ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ) ) |
| 160 |
|
simplrl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) → 𝑚 ∈ ℕ ) |
| 161 |
160
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑚 ) → 𝑚 ∈ ℕ ) |
| 162 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → 𝑛 ∈ ℕ ) |
| 163 |
162
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑚 ) → 𝑛 ∈ ℕ ) |
| 164 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑚 ) → ¬ 2 ∥ 𝑚 ) |
| 165 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑚 ) → ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) |
| 166 |
164 165
|
jca |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑚 ) → ( ¬ 2 ∥ 𝑚 ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ) |
| 167 |
152 159 161 163 166
|
2rspcedvdw |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑚 ) → ∃ 𝑔 ∈ ℕ ∃ ℎ ∈ ℕ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ) |
| 168 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑚 ) → 𝑙 < 𝐶 ) |
| 169 |
167 168
|
jca |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑚 ) → ( ∃ 𝑔 ∈ ℕ ∃ ℎ ∈ ℕ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ 𝑙 < 𝐶 ) ) |
| 170 |
|
breq2 |
⊢ ( 𝑔 = 𝑛 → ( 2 ∥ 𝑔 ↔ 2 ∥ 𝑛 ) ) |
| 171 |
170
|
notbid |
⊢ ( 𝑔 = 𝑛 → ( ¬ 2 ∥ 𝑔 ↔ ¬ 2 ∥ 𝑛 ) ) |
| 172 |
|
oveq1 |
⊢ ( 𝑔 = 𝑛 → ( 𝑔 gcd ℎ ) = ( 𝑛 gcd ℎ ) ) |
| 173 |
172
|
eqeq1d |
⊢ ( 𝑔 = 𝑛 → ( ( 𝑔 gcd ℎ ) = 1 ↔ ( 𝑛 gcd ℎ ) = 1 ) ) |
| 174 |
|
oveq1 |
⊢ ( 𝑔 = 𝑛 → ( 𝑔 ↑ 4 ) = ( 𝑛 ↑ 4 ) ) |
| 175 |
174
|
oveq1d |
⊢ ( 𝑔 = 𝑛 → ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( ( 𝑛 ↑ 4 ) + ( ℎ ↑ 4 ) ) ) |
| 176 |
175
|
eqeq1d |
⊢ ( 𝑔 = 𝑛 → ( ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ↔ ( ( 𝑛 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) |
| 177 |
173 176
|
anbi12d |
⊢ ( 𝑔 = 𝑛 → ( ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ↔ ( ( 𝑛 gcd ℎ ) = 1 ∧ ( ( 𝑛 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ) |
| 178 |
171 177
|
anbi12d |
⊢ ( 𝑔 = 𝑛 → ( ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ↔ ( ¬ 2 ∥ 𝑛 ∧ ( ( 𝑛 gcd ℎ ) = 1 ∧ ( ( 𝑛 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ) ) |
| 179 |
|
oveq2 |
⊢ ( ℎ = 𝑚 → ( 𝑛 gcd ℎ ) = ( 𝑛 gcd 𝑚 ) ) |
| 180 |
179
|
eqeq1d |
⊢ ( ℎ = 𝑚 → ( ( 𝑛 gcd ℎ ) = 1 ↔ ( 𝑛 gcd 𝑚 ) = 1 ) ) |
| 181 |
|
oveq1 |
⊢ ( ℎ = 𝑚 → ( ℎ ↑ 4 ) = ( 𝑚 ↑ 4 ) ) |
| 182 |
181
|
oveq2d |
⊢ ( ℎ = 𝑚 → ( ( 𝑛 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( ( 𝑛 ↑ 4 ) + ( 𝑚 ↑ 4 ) ) ) |
| 183 |
182
|
eqeq1d |
⊢ ( ℎ = 𝑚 → ( ( ( 𝑛 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ↔ ( ( 𝑛 ↑ 4 ) + ( 𝑚 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) |
| 184 |
180 183
|
anbi12d |
⊢ ( ℎ = 𝑚 → ( ( ( 𝑛 gcd ℎ ) = 1 ∧ ( ( 𝑛 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ↔ ( ( 𝑛 gcd 𝑚 ) = 1 ∧ ( ( 𝑛 ↑ 4 ) + ( 𝑚 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ) |
| 185 |
184
|
anbi2d |
⊢ ( ℎ = 𝑚 → ( ( ¬ 2 ∥ 𝑛 ∧ ( ( 𝑛 gcd ℎ ) = 1 ∧ ( ( 𝑛 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ↔ ( ¬ 2 ∥ 𝑛 ∧ ( ( 𝑛 gcd 𝑚 ) = 1 ∧ ( ( 𝑛 ↑ 4 ) + ( 𝑚 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ) ) |
| 186 |
162
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑛 ) → 𝑛 ∈ ℕ ) |
| 187 |
160
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑛 ) → 𝑚 ∈ ℕ ) |
| 188 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑛 ) → ¬ 2 ∥ 𝑛 ) |
| 189 |
186
|
nnzd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑛 ) → 𝑛 ∈ ℤ ) |
| 190 |
187
|
nnzd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑛 ) → 𝑚 ∈ ℤ ) |
| 191 |
189 190
|
gcdcomd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑛 ) → ( 𝑛 gcd 𝑚 ) = ( 𝑚 gcd 𝑛 ) ) |
| 192 |
|
simplrl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑛 ) → ( 𝑚 gcd 𝑛 ) = 1 ) |
| 193 |
191 192
|
eqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑛 ) → ( 𝑛 gcd 𝑚 ) = 1 ) |
| 194 |
55
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑛 ) → 4 ∈ ℕ0 ) |
| 195 |
186 194
|
nnexpcld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑛 ) → ( 𝑛 ↑ 4 ) ∈ ℕ ) |
| 196 |
195
|
nncnd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑛 ) → ( 𝑛 ↑ 4 ) ∈ ℂ ) |
| 197 |
187 194
|
nnexpcld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑛 ) → ( 𝑚 ↑ 4 ) ∈ ℕ ) |
| 198 |
197
|
nncnd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑛 ) → ( 𝑚 ↑ 4 ) ∈ ℂ ) |
| 199 |
196 198
|
addcomd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑛 ) → ( ( 𝑛 ↑ 4 ) + ( 𝑚 ↑ 4 ) ) = ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) ) |
| 200 |
|
simplrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑛 ) → ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) |
| 201 |
199 200
|
eqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑛 ) → ( ( 𝑛 ↑ 4 ) + ( 𝑚 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) |
| 202 |
188 193 201
|
jca32 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑛 ) → ( ¬ 2 ∥ 𝑛 ∧ ( ( 𝑛 gcd 𝑚 ) = 1 ∧ ( ( 𝑛 ↑ 4 ) + ( 𝑚 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ) |
| 203 |
178 185 186 187 202
|
2rspcedvdw |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑛 ) → ∃ 𝑔 ∈ ℕ ∃ ℎ ∈ ℕ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ) |
| 204 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑛 ) → 𝑙 < 𝐶 ) |
| 205 |
203 204
|
jca |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ ¬ 2 ∥ 𝑛 ) → ( ∃ 𝑔 ∈ ℕ ∃ ℎ ∈ ℕ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ 𝑙 < 𝐶 ) ) |
| 206 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → 𝑚 ∈ ℕ ) |
| 207 |
206
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ 2 ∥ 𝑚 ) → 𝑚 ∈ ℕ ) |
| 208 |
207
|
nnsqcld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ 2 ∥ 𝑚 ) → ( 𝑚 ↑ 2 ) ∈ ℕ ) |
| 209 |
162
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ 2 ∥ 𝑚 ) → 𝑛 ∈ ℕ ) |
| 210 |
209
|
nnsqcld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ 2 ∥ 𝑚 ) → ( 𝑛 ↑ 2 ) ∈ ℕ ) |
| 211 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ 2 ∥ 𝑚 ) → 𝑙 ∈ ℕ ) |
| 212 |
160
|
nnzd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) → 𝑚 ∈ ℤ ) |
| 213 |
27
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) → 2 ∈ ℕ ) |
| 214 |
|
dvdsexp2im |
⊢ ( ( 2 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 2 ∈ ℕ ) → ( 2 ∥ 𝑚 → 2 ∥ ( 𝑚 ↑ 2 ) ) ) |
| 215 |
62 212 213 214
|
mp3an2i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) → ( 2 ∥ 𝑚 → 2 ∥ ( 𝑚 ↑ 2 ) ) ) |
| 216 |
215
|
imp |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ 2 ∥ 𝑚 ) → 2 ∥ ( 𝑚 ↑ 2 ) ) |
| 217 |
19
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ 2 ∥ 𝑚 ) → 2 ∈ ℕ0 ) |
| 218 |
207
|
nncnd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ 2 ∥ 𝑚 ) → 𝑚 ∈ ℂ ) |
| 219 |
218
|
flt4lem |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ 2 ∥ 𝑚 ) → ( 𝑚 ↑ 4 ) = ( ( 𝑚 ↑ 2 ) ↑ 2 ) ) |
| 220 |
209
|
nncnd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ 2 ∥ 𝑚 ) → 𝑛 ∈ ℂ ) |
| 221 |
220
|
flt4lem |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ 2 ∥ 𝑚 ) → ( 𝑛 ↑ 4 ) = ( ( 𝑛 ↑ 2 ) ↑ 2 ) ) |
| 222 |
219 221
|
oveq12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ 2 ∥ 𝑚 ) → ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) + ( ( 𝑛 ↑ 2 ) ↑ 2 ) ) ) |
| 223 |
|
simplrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ 2 ∥ 𝑚 ) → ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) |
| 224 |
222 223
|
eqtr3d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ 2 ∥ 𝑚 ) → ( ( ( 𝑚 ↑ 2 ) ↑ 2 ) + ( ( 𝑛 ↑ 2 ) ↑ 2 ) ) = ( 𝑙 ↑ 2 ) ) |
| 225 |
|
simplrl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ 2 ∥ 𝑚 ) → ( 𝑚 gcd 𝑛 ) = 1 ) |
| 226 |
27
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ 2 ∥ 𝑚 ) → 2 ∈ ℕ ) |
| 227 |
|
rppwr |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ∧ 2 ∈ ℕ ) → ( ( 𝑚 gcd 𝑛 ) = 1 → ( ( 𝑚 ↑ 2 ) gcd ( 𝑛 ↑ 2 ) ) = 1 ) ) |
| 228 |
207 209 226 227
|
syl3anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ 2 ∥ 𝑚 ) → ( ( 𝑚 gcd 𝑛 ) = 1 → ( ( 𝑚 ↑ 2 ) gcd ( 𝑛 ↑ 2 ) ) = 1 ) ) |
| 229 |
225 228
|
mpd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ 2 ∥ 𝑚 ) → ( ( 𝑚 ↑ 2 ) gcd ( 𝑛 ↑ 2 ) ) = 1 ) |
| 230 |
208 210 211 217 224 229
|
fltaccoprm |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ 2 ∥ 𝑚 ) → ( ( 𝑚 ↑ 2 ) gcd 𝑙 ) = 1 ) |
| 231 |
208 210 211 216 230 224
|
flt4lem2 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ 2 ∥ 𝑚 ) → ¬ 2 ∥ ( 𝑛 ↑ 2 ) ) |
| 232 |
209
|
nnzd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ 2 ∥ 𝑚 ) → 𝑛 ∈ ℤ ) |
| 233 |
|
dvdsexp2im |
⊢ ( ( 2 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 2 ∈ ℕ ) → ( 2 ∥ 𝑛 → 2 ∥ ( 𝑛 ↑ 2 ) ) ) |
| 234 |
62 232 226 233
|
mp3an2i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ 2 ∥ 𝑚 ) → ( 2 ∥ 𝑛 → 2 ∥ ( 𝑛 ↑ 2 ) ) ) |
| 235 |
231 234
|
mtod |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ 2 ∥ 𝑚 ) → ¬ 2 ∥ 𝑛 ) |
| 236 |
235
|
ex |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) → ( 2 ∥ 𝑚 → ¬ 2 ∥ 𝑛 ) ) |
| 237 |
|
imor |
⊢ ( ( 2 ∥ 𝑚 → ¬ 2 ∥ 𝑛 ) ↔ ( ¬ 2 ∥ 𝑚 ∨ ¬ 2 ∥ 𝑛 ) ) |
| 238 |
236 237
|
sylib |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) → ( ¬ 2 ∥ 𝑚 ∨ ¬ 2 ∥ 𝑛 ) ) |
| 239 |
169 205 238
|
mpjaodan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) → ( ∃ 𝑔 ∈ ℕ ∃ ℎ ∈ ℕ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ 𝑙 < 𝐶 ) ) |
| 240 |
239
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) → ( ∃ 𝑔 ∈ ℕ ∃ ℎ ∈ ℕ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ 𝑙 < 𝐶 ) ) ) |
| 241 |
240
|
rexlimdvva |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ 𝑙 < 𝐶 ) → ( ∃ 𝑚 ∈ ℕ ∃ 𝑛 ∈ ℕ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) → ( ∃ 𝑔 ∈ ℕ ∃ ℎ ∈ ℕ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ 𝑙 < 𝐶 ) ) ) |
| 242 |
241
|
expimpd |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → ( ( 𝑙 < 𝐶 ∧ ∃ 𝑚 ∈ ℕ ∃ 𝑛 ∈ ℕ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) → ( ∃ 𝑔 ∈ ℕ ∃ ℎ ∈ ℕ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ 𝑙 < 𝐶 ) ) ) |
| 243 |
242
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑙 ∈ ℕ ( 𝑙 < 𝐶 ∧ ∃ 𝑚 ∈ ℕ ∃ 𝑛 ∈ ℕ ( ( 𝑚 gcd 𝑛 ) = 1 ∧ ( ( 𝑚 ↑ 4 ) + ( 𝑛 ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) → ∃ 𝑙 ∈ ℕ ( ∃ 𝑔 ∈ ℕ ∃ ℎ ∈ ℕ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ 𝑙 < 𝐶 ) ) ) |
| 244 |
143 243
|
mpd |
⊢ ( 𝜑 → ∃ 𝑙 ∈ ℕ ( ∃ 𝑔 ∈ ℕ ∃ ℎ ∈ ℕ ( ¬ 2 ∥ 𝑔 ∧ ( ( 𝑔 gcd ℎ ) = 1 ∧ ( ( 𝑔 ↑ 4 ) + ( ℎ ↑ 4 ) ) = ( 𝑙 ↑ 2 ) ) ) ∧ 𝑙 < 𝐶 ) ) |