Step |
Hyp |
Ref |
Expression |
1 |
|
flt4lem5a.m |
⊢ 𝑀 = ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) |
2 |
|
flt4lem5a.n |
⊢ 𝑁 = ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) |
3 |
|
flt4lem5a.r |
⊢ 𝑅 = ( ( ( √ ‘ ( 𝑀 + 𝑁 ) ) + ( √ ‘ ( 𝑀 − 𝑁 ) ) ) / 2 ) |
4 |
|
flt4lem5a.s |
⊢ 𝑆 = ( ( ( √ ‘ ( 𝑀 + 𝑁 ) ) − ( √ ‘ ( 𝑀 − 𝑁 ) ) ) / 2 ) |
5 |
|
flt4lem5a.a |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |
6 |
|
flt4lem5a.b |
⊢ ( 𝜑 → 𝐵 ∈ ℕ ) |
7 |
|
flt4lem5a.c |
⊢ ( 𝜑 → 𝐶 ∈ ℕ ) |
8 |
|
flt4lem5a.1 |
⊢ ( 𝜑 → ¬ 2 ∥ 𝐴 ) |
9 |
|
flt4lem5a.2 |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐶 ) = 1 ) |
10 |
|
flt4lem5a.3 |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) = ( 𝐶 ↑ 2 ) ) |
11 |
5
|
nnsqcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℕ ) |
12 |
6
|
nnsqcld |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℕ ) |
13 |
|
2prm |
⊢ 2 ∈ ℙ |
14 |
5
|
nnzd |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
15 |
|
prmdvdssq |
⊢ ( ( 2 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 2 ∥ 𝐴 ↔ 2 ∥ ( 𝐴 ↑ 2 ) ) ) |
16 |
13 14 15
|
sylancr |
⊢ ( 𝜑 → ( 2 ∥ 𝐴 ↔ 2 ∥ ( 𝐴 ↑ 2 ) ) ) |
17 |
8 16
|
mtbid |
⊢ ( 𝜑 → ¬ 2 ∥ ( 𝐴 ↑ 2 ) ) |
18 |
|
2nn |
⊢ 2 ∈ ℕ |
19 |
18
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ ) |
20 |
|
rplpwr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ ∧ 2 ∈ ℕ ) → ( ( 𝐴 gcd 𝐶 ) = 1 → ( ( 𝐴 ↑ 2 ) gcd 𝐶 ) = 1 ) ) |
21 |
5 7 19 20
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐶 ) = 1 → ( ( 𝐴 ↑ 2 ) gcd 𝐶 ) = 1 ) ) |
22 |
9 21
|
mpd |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) gcd 𝐶 ) = 1 ) |
23 |
5
|
nncnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
24 |
23
|
flt4lem |
⊢ ( 𝜑 → ( 𝐴 ↑ 4 ) = ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) |
25 |
6
|
nncnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
26 |
25
|
flt4lem |
⊢ ( 𝜑 → ( 𝐵 ↑ 4 ) = ( ( 𝐵 ↑ 2 ) ↑ 2 ) ) |
27 |
24 26
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) = ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) + ( ( 𝐵 ↑ 2 ) ↑ 2 ) ) ) |
28 |
27 10
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) + ( ( 𝐵 ↑ 2 ) ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) |
29 |
11 12 7 17 22 28
|
flt4lem1 |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) ∈ ℕ ∧ ( 𝐵 ↑ 2 ) ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) + ( ( 𝐵 ↑ 2 ) ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( ( 𝐴 ↑ 2 ) gcd ( 𝐵 ↑ 2 ) ) = 1 ∧ ¬ 2 ∥ ( 𝐴 ↑ 2 ) ) ) ) |
30 |
2
|
pythagtriplem13 |
⊢ ( ( ( ( 𝐴 ↑ 2 ) ∈ ℕ ∧ ( 𝐵 ↑ 2 ) ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) + ( ( 𝐵 ↑ 2 ) ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( ( 𝐴 ↑ 2 ) gcd ( 𝐵 ↑ 2 ) ) = 1 ∧ ¬ 2 ∥ ( 𝐴 ↑ 2 ) ) ) → 𝑁 ∈ ℕ ) |
31 |
29 30
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
32 |
1
|
pythagtriplem11 |
⊢ ( ( ( ( 𝐴 ↑ 2 ) ∈ ℕ ∧ ( 𝐵 ↑ 2 ) ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) + ( ( 𝐵 ↑ 2 ) ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( ( 𝐴 ↑ 2 ) gcd ( 𝐵 ↑ 2 ) ) = 1 ∧ ¬ 2 ∥ ( 𝐴 ↑ 2 ) ) ) → 𝑀 ∈ ℕ ) |
33 |
29 32
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
34 |
1 2 3 4 5 6 7 8 9 10
|
flt4lem5a |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) + ( 𝑁 ↑ 2 ) ) = ( 𝑀 ↑ 2 ) ) |
35 |
31
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
36 |
14 35
|
gcdcomd |
⊢ ( 𝜑 → ( 𝐴 gcd 𝑁 ) = ( 𝑁 gcd 𝐴 ) ) |
37 |
33
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
38 |
35 37
|
gcdcomd |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑀 ) = ( 𝑀 gcd 𝑁 ) ) |
39 |
1 2
|
flt4lem5 |
⊢ ( ( ( ( 𝐴 ↑ 2 ) ∈ ℕ ∧ ( 𝐵 ↑ 2 ) ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) + ( ( 𝐵 ↑ 2 ) ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( ( 𝐴 ↑ 2 ) gcd ( 𝐵 ↑ 2 ) ) = 1 ∧ ¬ 2 ∥ ( 𝐴 ↑ 2 ) ) ) → ( 𝑀 gcd 𝑁 ) = 1 ) |
40 |
29 39
|
syl |
⊢ ( 𝜑 → ( 𝑀 gcd 𝑁 ) = 1 ) |
41 |
38 40
|
eqtrd |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑀 ) = 1 ) |
42 |
31
|
nnsqcld |
⊢ ( 𝜑 → ( 𝑁 ↑ 2 ) ∈ ℕ ) |
43 |
42
|
nncnd |
⊢ ( 𝜑 → ( 𝑁 ↑ 2 ) ∈ ℂ ) |
44 |
11
|
nncnd |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
45 |
43 44
|
addcomd |
⊢ ( 𝜑 → ( ( 𝑁 ↑ 2 ) + ( 𝐴 ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) + ( 𝑁 ↑ 2 ) ) ) |
46 |
45 34
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑁 ↑ 2 ) + ( 𝐴 ↑ 2 ) ) = ( 𝑀 ↑ 2 ) ) |
47 |
31 5 33 41 46
|
fltabcoprm |
⊢ ( 𝜑 → ( 𝑁 gcd 𝐴 ) = 1 ) |
48 |
36 47
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 gcd 𝑁 ) = 1 ) |
49 |
3 4
|
flt4lem5 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝑁 ↑ 2 ) ) = ( 𝑀 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝑁 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝑅 gcd 𝑆 ) = 1 ) |
50 |
5 31 33 34 48 8 49
|
syl312anc |
⊢ ( 𝜑 → ( 𝑅 gcd 𝑆 ) = 1 ) |
51 |
3
|
pythagtriplem11 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝑁 ↑ 2 ) ) = ( 𝑀 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝑁 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝑅 ∈ ℕ ) |
52 |
5 31 33 34 48 8 51
|
syl312anc |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
53 |
4
|
pythagtriplem13 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝑁 ↑ 2 ) ) = ( 𝑀 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝑁 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝑆 ∈ ℕ ) |
54 |
5 31 33 34 48 8 53
|
syl312anc |
⊢ ( 𝜑 → 𝑆 ∈ ℕ ) |
55 |
1 2 3 4 5 6 7 8 9 10
|
flt4lem5d |
⊢ ( 𝜑 → 𝑀 = ( ( 𝑅 ↑ 2 ) + ( 𝑆 ↑ 2 ) ) ) |
56 |
33 52 54 55 50
|
flt4lem5elem |
⊢ ( 𝜑 → ( ( 𝑅 gcd 𝑀 ) = 1 ∧ ( 𝑆 gcd 𝑀 ) = 1 ) ) |
57 |
|
3anass |
⊢ ( ( ( 𝑅 gcd 𝑆 ) = 1 ∧ ( 𝑅 gcd 𝑀 ) = 1 ∧ ( 𝑆 gcd 𝑀 ) = 1 ) ↔ ( ( 𝑅 gcd 𝑆 ) = 1 ∧ ( ( 𝑅 gcd 𝑀 ) = 1 ∧ ( 𝑆 gcd 𝑀 ) = 1 ) ) ) |
58 |
50 56 57
|
sylanbrc |
⊢ ( 𝜑 → ( ( 𝑅 gcd 𝑆 ) = 1 ∧ ( 𝑅 gcd 𝑀 ) = 1 ∧ ( 𝑆 gcd 𝑀 ) = 1 ) ) |
59 |
52 54 33
|
3jca |
⊢ ( 𝜑 → ( 𝑅 ∈ ℕ ∧ 𝑆 ∈ ℕ ∧ 𝑀 ∈ ℕ ) ) |
60 |
|
sq2 |
⊢ ( 2 ↑ 2 ) = 4 |
61 |
|
4cn |
⊢ 4 ∈ ℂ |
62 |
60 61
|
eqeltri |
⊢ ( 2 ↑ 2 ) ∈ ℂ |
63 |
62
|
a1i |
⊢ ( 𝜑 → ( 2 ↑ 2 ) ∈ ℂ ) |
64 |
52 54
|
nnmulcld |
⊢ ( 𝜑 → ( 𝑅 · 𝑆 ) ∈ ℕ ) |
65 |
33 64
|
nnmulcld |
⊢ ( 𝜑 → ( 𝑀 · ( 𝑅 · 𝑆 ) ) ∈ ℕ ) |
66 |
65
|
nncnd |
⊢ ( 𝜑 → ( 𝑀 · ( 𝑅 · 𝑆 ) ) ∈ ℂ ) |
67 |
|
4ne0 |
⊢ 4 ≠ 0 |
68 |
60 67
|
eqnetri |
⊢ ( 2 ↑ 2 ) ≠ 0 |
69 |
68
|
a1i |
⊢ ( 𝜑 → ( 2 ↑ 2 ) ≠ 0 ) |
70 |
|
2cn |
⊢ 2 ∈ ℂ |
71 |
70
|
sqvali |
⊢ ( 2 ↑ 2 ) = ( 2 · 2 ) |
72 |
71
|
oveq1i |
⊢ ( ( 2 ↑ 2 ) · ( 𝑀 · ( 𝑅 · 𝑆 ) ) ) = ( ( 2 · 2 ) · ( 𝑀 · ( 𝑅 · 𝑆 ) ) ) |
73 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
74 |
33
|
nncnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
75 |
64
|
nncnd |
⊢ ( 𝜑 → ( 𝑅 · 𝑆 ) ∈ ℂ ) |
76 |
73 73 74 75
|
mul4d |
⊢ ( 𝜑 → ( ( 2 · 2 ) · ( 𝑀 · ( 𝑅 · 𝑆 ) ) ) = ( ( 2 · 𝑀 ) · ( 2 · ( 𝑅 · 𝑆 ) ) ) ) |
77 |
1 2 3 4 5 6 7 8 9 10
|
flt4lem5c |
⊢ ( 𝜑 → 𝑁 = ( 2 · ( 𝑅 · 𝑆 ) ) ) |
78 |
77 31
|
eqeltrrd |
⊢ ( 𝜑 → ( 2 · ( 𝑅 · 𝑆 ) ) ∈ ℕ ) |
79 |
78
|
nncnd |
⊢ ( 𝜑 → ( 2 · ( 𝑅 · 𝑆 ) ) ∈ ℂ ) |
80 |
73 74 79
|
mulassd |
⊢ ( 𝜑 → ( ( 2 · 𝑀 ) · ( 2 · ( 𝑅 · 𝑆 ) ) ) = ( 2 · ( 𝑀 · ( 2 · ( 𝑅 · 𝑆 ) ) ) ) ) |
81 |
77
|
eqcomd |
⊢ ( 𝜑 → ( 2 · ( 𝑅 · 𝑆 ) ) = 𝑁 ) |
82 |
81
|
oveq2d |
⊢ ( 𝜑 → ( 𝑀 · ( 2 · ( 𝑅 · 𝑆 ) ) ) = ( 𝑀 · 𝑁 ) ) |
83 |
82
|
oveq2d |
⊢ ( 𝜑 → ( 2 · ( 𝑀 · ( 2 · ( 𝑅 · 𝑆 ) ) ) ) = ( 2 · ( 𝑀 · 𝑁 ) ) ) |
84 |
80 83
|
eqtrd |
⊢ ( 𝜑 → ( ( 2 · 𝑀 ) · ( 2 · ( 𝑅 · 𝑆 ) ) ) = ( 2 · ( 𝑀 · 𝑁 ) ) ) |
85 |
1 2 3 4 5 6 7 8 9 10
|
flt4lem5b |
⊢ ( 𝜑 → ( 2 · ( 𝑀 · 𝑁 ) ) = ( 𝐵 ↑ 2 ) ) |
86 |
76 84 85
|
3eqtrd |
⊢ ( 𝜑 → ( ( 2 · 2 ) · ( 𝑀 · ( 𝑅 · 𝑆 ) ) ) = ( 𝐵 ↑ 2 ) ) |
87 |
72 86
|
syl5eq |
⊢ ( 𝜑 → ( ( 2 ↑ 2 ) · ( 𝑀 · ( 𝑅 · 𝑆 ) ) ) = ( 𝐵 ↑ 2 ) ) |
88 |
63 66 69 87
|
mvllmuld |
⊢ ( 𝜑 → ( 𝑀 · ( 𝑅 · 𝑆 ) ) = ( ( 𝐵 ↑ 2 ) / ( 2 ↑ 2 ) ) ) |
89 |
|
2ne0 |
⊢ 2 ≠ 0 |
90 |
89
|
a1i |
⊢ ( 𝜑 → 2 ≠ 0 ) |
91 |
25 73 90
|
sqdivd |
⊢ ( 𝜑 → ( ( 𝐵 / 2 ) ↑ 2 ) = ( ( 𝐵 ↑ 2 ) / ( 2 ↑ 2 ) ) ) |
92 |
88 91
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑀 · ( 𝑅 · 𝑆 ) ) = ( ( 𝐵 / 2 ) ↑ 2 ) ) |
93 |
65
|
nnzd |
⊢ ( 𝜑 → ( 𝑀 · ( 𝑅 · 𝑆 ) ) ∈ ℤ ) |
94 |
92 93
|
eqeltrrd |
⊢ ( 𝜑 → ( ( 𝐵 / 2 ) ↑ 2 ) ∈ ℤ ) |
95 |
6
|
nnzd |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
96 |
|
znq |
⊢ ( ( 𝐵 ∈ ℤ ∧ 2 ∈ ℕ ) → ( 𝐵 / 2 ) ∈ ℚ ) |
97 |
95 18 96
|
sylancl |
⊢ ( 𝜑 → ( 𝐵 / 2 ) ∈ ℚ ) |
98 |
6
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝐵 ) |
99 |
6
|
nnred |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
100 |
|
halfpos2 |
⊢ ( 𝐵 ∈ ℝ → ( 0 < 𝐵 ↔ 0 < ( 𝐵 / 2 ) ) ) |
101 |
99 100
|
syl |
⊢ ( 𝜑 → ( 0 < 𝐵 ↔ 0 < ( 𝐵 / 2 ) ) ) |
102 |
98 101
|
mpbid |
⊢ ( 𝜑 → 0 < ( 𝐵 / 2 ) ) |
103 |
94 97 102
|
posqsqznn |
⊢ ( 𝜑 → ( 𝐵 / 2 ) ∈ ℕ ) |
104 |
92 103
|
jca |
⊢ ( 𝜑 → ( ( 𝑀 · ( 𝑅 · 𝑆 ) ) = ( ( 𝐵 / 2 ) ↑ 2 ) ∧ ( 𝐵 / 2 ) ∈ ℕ ) ) |
105 |
58 59 104
|
3jca |
⊢ ( 𝜑 → ( ( ( 𝑅 gcd 𝑆 ) = 1 ∧ ( 𝑅 gcd 𝑀 ) = 1 ∧ ( 𝑆 gcd 𝑀 ) = 1 ) ∧ ( 𝑅 ∈ ℕ ∧ 𝑆 ∈ ℕ ∧ 𝑀 ∈ ℕ ) ∧ ( ( 𝑀 · ( 𝑅 · 𝑆 ) ) = ( ( 𝐵 / 2 ) ↑ 2 ) ∧ ( 𝐵 / 2 ) ∈ ℕ ) ) ) |