Step |
Hyp |
Ref |
Expression |
1 |
|
flt4lem5a.m |
|- M = ( ( ( sqrt ` ( C + ( B ^ 2 ) ) ) + ( sqrt ` ( C - ( B ^ 2 ) ) ) ) / 2 ) |
2 |
|
flt4lem5a.n |
|- N = ( ( ( sqrt ` ( C + ( B ^ 2 ) ) ) - ( sqrt ` ( C - ( B ^ 2 ) ) ) ) / 2 ) |
3 |
|
flt4lem5a.r |
|- R = ( ( ( sqrt ` ( M + N ) ) + ( sqrt ` ( M - N ) ) ) / 2 ) |
4 |
|
flt4lem5a.s |
|- S = ( ( ( sqrt ` ( M + N ) ) - ( sqrt ` ( M - N ) ) ) / 2 ) |
5 |
|
flt4lem5a.a |
|- ( ph -> A e. NN ) |
6 |
|
flt4lem5a.b |
|- ( ph -> B e. NN ) |
7 |
|
flt4lem5a.c |
|- ( ph -> C e. NN ) |
8 |
|
flt4lem5a.1 |
|- ( ph -> -. 2 || A ) |
9 |
|
flt4lem5a.2 |
|- ( ph -> ( A gcd C ) = 1 ) |
10 |
|
flt4lem5a.3 |
|- ( ph -> ( ( A ^ 4 ) + ( B ^ 4 ) ) = ( C ^ 2 ) ) |
11 |
5
|
nnsqcld |
|- ( ph -> ( A ^ 2 ) e. NN ) |
12 |
6
|
nnsqcld |
|- ( ph -> ( B ^ 2 ) e. NN ) |
13 |
|
2prm |
|- 2 e. Prime |
14 |
5
|
nnzd |
|- ( ph -> A e. ZZ ) |
15 |
|
prmdvdssq |
|- ( ( 2 e. Prime /\ A e. ZZ ) -> ( 2 || A <-> 2 || ( A ^ 2 ) ) ) |
16 |
13 14 15
|
sylancr |
|- ( ph -> ( 2 || A <-> 2 || ( A ^ 2 ) ) ) |
17 |
8 16
|
mtbid |
|- ( ph -> -. 2 || ( A ^ 2 ) ) |
18 |
|
2nn |
|- 2 e. NN |
19 |
18
|
a1i |
|- ( ph -> 2 e. NN ) |
20 |
|
rplpwr |
|- ( ( A e. NN /\ C e. NN /\ 2 e. NN ) -> ( ( A gcd C ) = 1 -> ( ( A ^ 2 ) gcd C ) = 1 ) ) |
21 |
5 7 19 20
|
syl3anc |
|- ( ph -> ( ( A gcd C ) = 1 -> ( ( A ^ 2 ) gcd C ) = 1 ) ) |
22 |
9 21
|
mpd |
|- ( ph -> ( ( A ^ 2 ) gcd C ) = 1 ) |
23 |
5
|
nncnd |
|- ( ph -> A e. CC ) |
24 |
23
|
flt4lem |
|- ( ph -> ( A ^ 4 ) = ( ( A ^ 2 ) ^ 2 ) ) |
25 |
6
|
nncnd |
|- ( ph -> B e. CC ) |
26 |
25
|
flt4lem |
|- ( ph -> ( B ^ 4 ) = ( ( B ^ 2 ) ^ 2 ) ) |
27 |
24 26
|
oveq12d |
|- ( ph -> ( ( A ^ 4 ) + ( B ^ 4 ) ) = ( ( ( A ^ 2 ) ^ 2 ) + ( ( B ^ 2 ) ^ 2 ) ) ) |
28 |
27 10
|
eqtr3d |
|- ( ph -> ( ( ( A ^ 2 ) ^ 2 ) + ( ( B ^ 2 ) ^ 2 ) ) = ( C ^ 2 ) ) |
29 |
11 12 7 17 22 28
|
flt4lem1 |
|- ( ph -> ( ( ( A ^ 2 ) e. NN /\ ( B ^ 2 ) e. NN /\ C e. NN ) /\ ( ( ( A ^ 2 ) ^ 2 ) + ( ( B ^ 2 ) ^ 2 ) ) = ( C ^ 2 ) /\ ( ( ( A ^ 2 ) gcd ( B ^ 2 ) ) = 1 /\ -. 2 || ( A ^ 2 ) ) ) ) |
30 |
2
|
pythagtriplem13 |
|- ( ( ( ( A ^ 2 ) e. NN /\ ( B ^ 2 ) e. NN /\ C e. NN ) /\ ( ( ( A ^ 2 ) ^ 2 ) + ( ( B ^ 2 ) ^ 2 ) ) = ( C ^ 2 ) /\ ( ( ( A ^ 2 ) gcd ( B ^ 2 ) ) = 1 /\ -. 2 || ( A ^ 2 ) ) ) -> N e. NN ) |
31 |
29 30
|
syl |
|- ( ph -> N e. NN ) |
32 |
1
|
pythagtriplem11 |
|- ( ( ( ( A ^ 2 ) e. NN /\ ( B ^ 2 ) e. NN /\ C e. NN ) /\ ( ( ( A ^ 2 ) ^ 2 ) + ( ( B ^ 2 ) ^ 2 ) ) = ( C ^ 2 ) /\ ( ( ( A ^ 2 ) gcd ( B ^ 2 ) ) = 1 /\ -. 2 || ( A ^ 2 ) ) ) -> M e. NN ) |
33 |
29 32
|
syl |
|- ( ph -> M e. NN ) |
34 |
1 2 3 4 5 6 7 8 9 10
|
flt4lem5a |
|- ( ph -> ( ( A ^ 2 ) + ( N ^ 2 ) ) = ( M ^ 2 ) ) |
35 |
31
|
nnzd |
|- ( ph -> N e. ZZ ) |
36 |
14 35
|
gcdcomd |
|- ( ph -> ( A gcd N ) = ( N gcd A ) ) |
37 |
33
|
nnzd |
|- ( ph -> M e. ZZ ) |
38 |
35 37
|
gcdcomd |
|- ( ph -> ( N gcd M ) = ( M gcd N ) ) |
39 |
1 2
|
flt4lem5 |
|- ( ( ( ( A ^ 2 ) e. NN /\ ( B ^ 2 ) e. NN /\ C e. NN ) /\ ( ( ( A ^ 2 ) ^ 2 ) + ( ( B ^ 2 ) ^ 2 ) ) = ( C ^ 2 ) /\ ( ( ( A ^ 2 ) gcd ( B ^ 2 ) ) = 1 /\ -. 2 || ( A ^ 2 ) ) ) -> ( M gcd N ) = 1 ) |
40 |
29 39
|
syl |
|- ( ph -> ( M gcd N ) = 1 ) |
41 |
38 40
|
eqtrd |
|- ( ph -> ( N gcd M ) = 1 ) |
42 |
31
|
nnsqcld |
|- ( ph -> ( N ^ 2 ) e. NN ) |
43 |
42
|
nncnd |
|- ( ph -> ( N ^ 2 ) e. CC ) |
44 |
11
|
nncnd |
|- ( ph -> ( A ^ 2 ) e. CC ) |
45 |
43 44
|
addcomd |
|- ( ph -> ( ( N ^ 2 ) + ( A ^ 2 ) ) = ( ( A ^ 2 ) + ( N ^ 2 ) ) ) |
46 |
45 34
|
eqtrd |
|- ( ph -> ( ( N ^ 2 ) + ( A ^ 2 ) ) = ( M ^ 2 ) ) |
47 |
31 5 33 41 46
|
fltabcoprm |
|- ( ph -> ( N gcd A ) = 1 ) |
48 |
36 47
|
eqtrd |
|- ( ph -> ( A gcd N ) = 1 ) |
49 |
3 4
|
flt4lem5 |
|- ( ( ( A e. NN /\ N e. NN /\ M e. NN ) /\ ( ( A ^ 2 ) + ( N ^ 2 ) ) = ( M ^ 2 ) /\ ( ( A gcd N ) = 1 /\ -. 2 || A ) ) -> ( R gcd S ) = 1 ) |
50 |
5 31 33 34 48 8 49
|
syl312anc |
|- ( ph -> ( R gcd S ) = 1 ) |
51 |
3
|
pythagtriplem11 |
|- ( ( ( A e. NN /\ N e. NN /\ M e. NN ) /\ ( ( A ^ 2 ) + ( N ^ 2 ) ) = ( M ^ 2 ) /\ ( ( A gcd N ) = 1 /\ -. 2 || A ) ) -> R e. NN ) |
52 |
5 31 33 34 48 8 51
|
syl312anc |
|- ( ph -> R e. NN ) |
53 |
4
|
pythagtriplem13 |
|- ( ( ( A e. NN /\ N e. NN /\ M e. NN ) /\ ( ( A ^ 2 ) + ( N ^ 2 ) ) = ( M ^ 2 ) /\ ( ( A gcd N ) = 1 /\ -. 2 || A ) ) -> S e. NN ) |
54 |
5 31 33 34 48 8 53
|
syl312anc |
|- ( ph -> S e. NN ) |
55 |
1 2 3 4 5 6 7 8 9 10
|
flt4lem5d |
|- ( ph -> M = ( ( R ^ 2 ) + ( S ^ 2 ) ) ) |
56 |
33 52 54 55 50
|
flt4lem5elem |
|- ( ph -> ( ( R gcd M ) = 1 /\ ( S gcd M ) = 1 ) ) |
57 |
|
3anass |
|- ( ( ( R gcd S ) = 1 /\ ( R gcd M ) = 1 /\ ( S gcd M ) = 1 ) <-> ( ( R gcd S ) = 1 /\ ( ( R gcd M ) = 1 /\ ( S gcd M ) = 1 ) ) ) |
58 |
50 56 57
|
sylanbrc |
|- ( ph -> ( ( R gcd S ) = 1 /\ ( R gcd M ) = 1 /\ ( S gcd M ) = 1 ) ) |
59 |
52 54 33
|
3jca |
|- ( ph -> ( R e. NN /\ S e. NN /\ M e. NN ) ) |
60 |
|
sq2 |
|- ( 2 ^ 2 ) = 4 |
61 |
|
4cn |
|- 4 e. CC |
62 |
60 61
|
eqeltri |
|- ( 2 ^ 2 ) e. CC |
63 |
62
|
a1i |
|- ( ph -> ( 2 ^ 2 ) e. CC ) |
64 |
52 54
|
nnmulcld |
|- ( ph -> ( R x. S ) e. NN ) |
65 |
33 64
|
nnmulcld |
|- ( ph -> ( M x. ( R x. S ) ) e. NN ) |
66 |
65
|
nncnd |
|- ( ph -> ( M x. ( R x. S ) ) e. CC ) |
67 |
|
4ne0 |
|- 4 =/= 0 |
68 |
60 67
|
eqnetri |
|- ( 2 ^ 2 ) =/= 0 |
69 |
68
|
a1i |
|- ( ph -> ( 2 ^ 2 ) =/= 0 ) |
70 |
|
2cn |
|- 2 e. CC |
71 |
70
|
sqvali |
|- ( 2 ^ 2 ) = ( 2 x. 2 ) |
72 |
71
|
oveq1i |
|- ( ( 2 ^ 2 ) x. ( M x. ( R x. S ) ) ) = ( ( 2 x. 2 ) x. ( M x. ( R x. S ) ) ) |
73 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
74 |
33
|
nncnd |
|- ( ph -> M e. CC ) |
75 |
64
|
nncnd |
|- ( ph -> ( R x. S ) e. CC ) |
76 |
73 73 74 75
|
mul4d |
|- ( ph -> ( ( 2 x. 2 ) x. ( M x. ( R x. S ) ) ) = ( ( 2 x. M ) x. ( 2 x. ( R x. S ) ) ) ) |
77 |
1 2 3 4 5 6 7 8 9 10
|
flt4lem5c |
|- ( ph -> N = ( 2 x. ( R x. S ) ) ) |
78 |
77 31
|
eqeltrrd |
|- ( ph -> ( 2 x. ( R x. S ) ) e. NN ) |
79 |
78
|
nncnd |
|- ( ph -> ( 2 x. ( R x. S ) ) e. CC ) |
80 |
73 74 79
|
mulassd |
|- ( ph -> ( ( 2 x. M ) x. ( 2 x. ( R x. S ) ) ) = ( 2 x. ( M x. ( 2 x. ( R x. S ) ) ) ) ) |
81 |
77
|
eqcomd |
|- ( ph -> ( 2 x. ( R x. S ) ) = N ) |
82 |
81
|
oveq2d |
|- ( ph -> ( M x. ( 2 x. ( R x. S ) ) ) = ( M x. N ) ) |
83 |
82
|
oveq2d |
|- ( ph -> ( 2 x. ( M x. ( 2 x. ( R x. S ) ) ) ) = ( 2 x. ( M x. N ) ) ) |
84 |
80 83
|
eqtrd |
|- ( ph -> ( ( 2 x. M ) x. ( 2 x. ( R x. S ) ) ) = ( 2 x. ( M x. N ) ) ) |
85 |
1 2 3 4 5 6 7 8 9 10
|
flt4lem5b |
|- ( ph -> ( 2 x. ( M x. N ) ) = ( B ^ 2 ) ) |
86 |
76 84 85
|
3eqtrd |
|- ( ph -> ( ( 2 x. 2 ) x. ( M x. ( R x. S ) ) ) = ( B ^ 2 ) ) |
87 |
72 86
|
syl5eq |
|- ( ph -> ( ( 2 ^ 2 ) x. ( M x. ( R x. S ) ) ) = ( B ^ 2 ) ) |
88 |
63 66 69 87
|
mvllmuld |
|- ( ph -> ( M x. ( R x. S ) ) = ( ( B ^ 2 ) / ( 2 ^ 2 ) ) ) |
89 |
|
2ne0 |
|- 2 =/= 0 |
90 |
89
|
a1i |
|- ( ph -> 2 =/= 0 ) |
91 |
25 73 90
|
sqdivd |
|- ( ph -> ( ( B / 2 ) ^ 2 ) = ( ( B ^ 2 ) / ( 2 ^ 2 ) ) ) |
92 |
88 91
|
eqtr4d |
|- ( ph -> ( M x. ( R x. S ) ) = ( ( B / 2 ) ^ 2 ) ) |
93 |
65
|
nnzd |
|- ( ph -> ( M x. ( R x. S ) ) e. ZZ ) |
94 |
92 93
|
eqeltrrd |
|- ( ph -> ( ( B / 2 ) ^ 2 ) e. ZZ ) |
95 |
6
|
nnzd |
|- ( ph -> B e. ZZ ) |
96 |
|
znq |
|- ( ( B e. ZZ /\ 2 e. NN ) -> ( B / 2 ) e. QQ ) |
97 |
95 18 96
|
sylancl |
|- ( ph -> ( B / 2 ) e. QQ ) |
98 |
6
|
nngt0d |
|- ( ph -> 0 < B ) |
99 |
6
|
nnred |
|- ( ph -> B e. RR ) |
100 |
|
halfpos2 |
|- ( B e. RR -> ( 0 < B <-> 0 < ( B / 2 ) ) ) |
101 |
99 100
|
syl |
|- ( ph -> ( 0 < B <-> 0 < ( B / 2 ) ) ) |
102 |
98 101
|
mpbid |
|- ( ph -> 0 < ( B / 2 ) ) |
103 |
94 97 102
|
posqsqznn |
|- ( ph -> ( B / 2 ) e. NN ) |
104 |
92 103
|
jca |
|- ( ph -> ( ( M x. ( R x. S ) ) = ( ( B / 2 ) ^ 2 ) /\ ( B / 2 ) e. NN ) ) |
105 |
58 59 104
|
3jca |
|- ( ph -> ( ( ( R gcd S ) = 1 /\ ( R gcd M ) = 1 /\ ( S gcd M ) = 1 ) /\ ( R e. NN /\ S e. NN /\ M e. NN ) /\ ( ( M x. ( R x. S ) ) = ( ( B / 2 ) ^ 2 ) /\ ( B / 2 ) e. NN ) ) ) |