Metamath Proof Explorer


Theorem flt4lem5e

Description: Satisfy the hypotheses of flt4lem4 . EDITORIAL: This is not minimized! (Contributed by SN, 23-Aug-2024)

Ref Expression
Hypotheses flt4lem5a.m M = C + B 2 + C B 2 2
flt4lem5a.n N = C + B 2 C B 2 2
flt4lem5a.r R = M + N + M N 2
flt4lem5a.s S = M + N M N 2
flt4lem5a.a φ A
flt4lem5a.b φ B
flt4lem5a.c φ C
flt4lem5a.1 φ ¬ 2 A
flt4lem5a.2 φ A gcd C = 1
flt4lem5a.3 φ A 4 + B 4 = C 2
Assertion flt4lem5e φ R gcd S = 1 R gcd M = 1 S gcd M = 1 R S M M R S = B 2 2 B 2

Proof

Step Hyp Ref Expression
1 flt4lem5a.m M = C + B 2 + C B 2 2
2 flt4lem5a.n N = C + B 2 C B 2 2
3 flt4lem5a.r R = M + N + M N 2
4 flt4lem5a.s S = M + N M N 2
5 flt4lem5a.a φ A
6 flt4lem5a.b φ B
7 flt4lem5a.c φ C
8 flt4lem5a.1 φ ¬ 2 A
9 flt4lem5a.2 φ A gcd C = 1
10 flt4lem5a.3 φ A 4 + B 4 = C 2
11 5 nnsqcld φ A 2
12 6 nnsqcld φ B 2
13 2prm 2
14 5 nnzd φ A
15 prmdvdssq 2 A 2 A 2 A 2
16 13 14 15 sylancr φ 2 A 2 A 2
17 8 16 mtbid φ ¬ 2 A 2
18 2nn 2
19 18 a1i φ 2
20 rplpwr A C 2 A gcd C = 1 A 2 gcd C = 1
21 5 7 19 20 syl3anc φ A gcd C = 1 A 2 gcd C = 1
22 9 21 mpd φ A 2 gcd C = 1
23 5 nncnd φ A
24 23 flt4lem φ A 4 = A 2 2
25 6 nncnd φ B
26 25 flt4lem φ B 4 = B 2 2
27 24 26 oveq12d φ A 4 + B 4 = A 2 2 + B 2 2
28 27 10 eqtr3d φ A 2 2 + B 2 2 = C 2
29 11 12 7 17 22 28 flt4lem1 φ A 2 B 2 C A 2 2 + B 2 2 = C 2 A 2 gcd B 2 = 1 ¬ 2 A 2
30 2 pythagtriplem13 A 2 B 2 C A 2 2 + B 2 2 = C 2 A 2 gcd B 2 = 1 ¬ 2 A 2 N
31 29 30 syl φ N
32 1 pythagtriplem11 A 2 B 2 C A 2 2 + B 2 2 = C 2 A 2 gcd B 2 = 1 ¬ 2 A 2 M
33 29 32 syl φ M
34 1 2 3 4 5 6 7 8 9 10 flt4lem5a φ A 2 + N 2 = M 2
35 31 nnzd φ N
36 14 35 gcdcomd φ A gcd N = N gcd A
37 33 nnzd φ M
38 35 37 gcdcomd φ N gcd M = M gcd N
39 1 2 flt4lem5 A 2 B 2 C A 2 2 + B 2 2 = C 2 A 2 gcd B 2 = 1 ¬ 2 A 2 M gcd N = 1
40 29 39 syl φ M gcd N = 1
41 38 40 eqtrd φ N gcd M = 1
42 31 nnsqcld φ N 2
43 42 nncnd φ N 2
44 11 nncnd φ A 2
45 43 44 addcomd φ N 2 + A 2 = A 2 + N 2
46 45 34 eqtrd φ N 2 + A 2 = M 2
47 31 5 33 41 46 fltabcoprm φ N gcd A = 1
48 36 47 eqtrd φ A gcd N = 1
49 3 4 flt4lem5 A N M A 2 + N 2 = M 2 A gcd N = 1 ¬ 2 A R gcd S = 1
50 5 31 33 34 48 8 49 syl312anc φ R gcd S = 1
51 3 pythagtriplem11 A N M A 2 + N 2 = M 2 A gcd N = 1 ¬ 2 A R
52 5 31 33 34 48 8 51 syl312anc φ R
53 4 pythagtriplem13 A N M A 2 + N 2 = M 2 A gcd N = 1 ¬ 2 A S
54 5 31 33 34 48 8 53 syl312anc φ S
55 1 2 3 4 5 6 7 8 9 10 flt4lem5d φ M = R 2 + S 2
56 33 52 54 55 50 flt4lem5elem φ R gcd M = 1 S gcd M = 1
57 50 56 jca φ R gcd S = 1 R gcd M = 1 S gcd M = 1
58 3anass R gcd S = 1 R gcd M = 1 S gcd M = 1 R gcd S = 1 R gcd M = 1 S gcd M = 1
59 57 58 sylibr φ R gcd S = 1 R gcd M = 1 S gcd M = 1
60 52 54 33 3jca φ R S M
61 sq2 2 2 = 4
62 4cn 4
63 61 62 eqeltri 2 2
64 63 a1i φ 2 2
65 52 54 nnmulcld φ R S
66 33 65 nnmulcld φ M R S
67 66 nncnd φ M R S
68 4ne0 4 0
69 61 68 eqnetri 2 2 0
70 69 a1i φ 2 2 0
71 2cn 2
72 71 sqvali 2 2 = 2 2
73 72 oveq1i 2 2 M R S = 2 2 M R S
74 2cnd φ 2
75 33 nncnd φ M
76 65 nncnd φ R S
77 74 74 75 76 mul4d φ 2 2 M R S = 2 M 2 R S
78 1 2 3 4 5 6 7 8 9 10 flt4lem5c φ N = 2 R S
79 78 eqcomd φ 2 R S = N
80 79 31 eqeltrd φ 2 R S
81 80 nncnd φ 2 R S
82 74 75 81 mulassd φ 2 M 2 R S = 2 M 2 R S
83 79 oveq2d φ M 2 R S = M N
84 83 oveq2d φ 2 M 2 R S = 2 M N
85 82 84 eqtrd φ 2 M 2 R S = 2 M N
86 1 2 3 4 5 6 7 8 9 10 flt4lem5b φ 2 M N = B 2
87 77 85 86 3eqtrd φ 2 2 M R S = B 2
88 73 87 syl5eq φ 2 2 M R S = B 2
89 64 67 70 88 mvllmuld φ M R S = B 2 2 2
90 2ne0 2 0
91 90 a1i φ 2 0
92 25 74 91 sqdivd φ B 2 2 = B 2 2 2
93 89 92 eqtr4d φ M R S = B 2 2
94 66 nnzd φ M R S
95 93 94 eqeltrrd φ B 2 2
96 6 nnzd φ B
97 znq B 2 B 2
98 96 18 97 sylancl φ B 2
99 6 nngt0d φ 0 < B
100 6 nnred φ B
101 halfpos2 B 0 < B 0 < B 2
102 100 101 syl φ 0 < B 0 < B 2
103 99 102 mpbid φ 0 < B 2
104 95 98 103 posqsqznn φ B 2
105 93 104 jca φ M R S = B 2 2 B 2
106 59 60 105 3jca φ R gcd S = 1 R gcd M = 1 S gcd M = 1 R S M M R S = B 2 2 B 2