Step |
Hyp |
Ref |
Expression |
1 |
|
flt4lem5a.m |
|
2 |
|
flt4lem5a.n |
|
3 |
|
flt4lem5a.r |
|
4 |
|
flt4lem5a.s |
|
5 |
|
flt4lem5a.a |
|
6 |
|
flt4lem5a.b |
|
7 |
|
flt4lem5a.c |
|
8 |
|
flt4lem5a.1 |
|
9 |
|
flt4lem5a.2 |
|
10 |
|
flt4lem5a.3 |
|
11 |
1 2 3 4 5 6 7 8 9 10
|
flt4lem5d |
|
12 |
1 2 3 4 5 6 7 8 9 10
|
flt4lem5e |
|
13 |
12
|
simp2d |
|
14 |
13
|
simp3d |
|
15 |
13
|
simp1d |
|
16 |
13
|
simp2d |
|
17 |
15 16
|
nnmulcld |
|
18 |
12
|
simp3d |
|
19 |
18
|
simprd |
|
20 |
14
|
nnzd |
|
21 |
15
|
nnzd |
|
22 |
20 21
|
gcdcomd |
|
23 |
12
|
simp1d |
|
24 |
23
|
simp2d |
|
25 |
22 24
|
eqtrd |
|
26 |
16
|
nnzd |
|
27 |
20 26
|
gcdcomd |
|
28 |
23
|
simp3d |
|
29 |
27 28
|
eqtrd |
|
30 |
|
rpmul |
|
31 |
20 21 26 30
|
syl3anc |
|
32 |
25 29 31
|
mp2and |
|
33 |
18
|
simpld |
|
34 |
14 17 19 32 33
|
flt4lem4 |
|
35 |
34
|
simpld |
|
36 |
14 16
|
nnmulcld |
|
37 |
36
|
nnzd |
|
38 |
37 21
|
gcdcomd |
|
39 |
23
|
simp1d |
|
40 |
|
rpmul |
|
41 |
21 20 26 40
|
syl3anc |
|
42 |
24 39 41
|
mp2and |
|
43 |
38 42
|
eqtrd |
|
44 |
14
|
nncnd |
|
45 |
16
|
nncnd |
|
46 |
15
|
nncnd |
|
47 |
44 45 46
|
mul32d |
|
48 |
44 46 45
|
mulassd |
|
49 |
48 33
|
eqtrd |
|
50 |
47 49
|
eqtrd |
|
51 |
36 15 19 43 50
|
flt4lem4 |
|
52 |
51
|
simprd |
|
53 |
52
|
oveq1d |
|
54 |
|
gcdnncl |
|
55 |
15 19 54
|
syl2anc |
|
56 |
55
|
nncnd |
|
57 |
56
|
flt4lem |
|
58 |
53 57
|
eqtr4d |
|
59 |
14 15
|
nnmulcld |
|
60 |
59
|
nnzd |
|
61 |
60 26
|
gcdcomd |
|
62 |
26 21
|
gcdcomd |
|
63 |
62 39
|
eqtrd |
|
64 |
|
rpmul |
|
65 |
26 20 21 64
|
syl3anc |
|
66 |
28 63 65
|
mp2and |
|
67 |
61 66
|
eqtrd |
|
68 |
59 16 19 67 49
|
flt4lem4 |
|
69 |
68
|
simprd |
|
70 |
69
|
oveq1d |
|
71 |
|
gcdnncl |
|
72 |
16 19 71
|
syl2anc |
|
73 |
72
|
nncnd |
|
74 |
73
|
flt4lem |
|
75 |
70 74
|
eqtr4d |
|
76 |
58 75
|
oveq12d |
|
77 |
11 35 76
|
3eqtr3d |
|