Metamath Proof Explorer


Theorem flt4lem5f

Description: Final equation of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html . Given A ^ 4 + B ^ 4 = C ^ 2 , provide a smaller solution. This satisfies the infinite descent condition. (Contributed by SN, 24-Aug-2024)

Ref Expression
Hypotheses flt4lem5a.m M=C+B2+CB22
flt4lem5a.n N=C+B2CB22
flt4lem5a.r R=M+N+MN2
flt4lem5a.s S=M+NMN2
flt4lem5a.a φA
flt4lem5a.b φB
flt4lem5a.c φC
flt4lem5a.1 φ¬2A
flt4lem5a.2 φAgcdC=1
flt4lem5a.3 φA4+B4=C2
Assertion flt4lem5f φMgcdB22=RgcdB24+SgcdB24

Proof

Step Hyp Ref Expression
1 flt4lem5a.m M=C+B2+CB22
2 flt4lem5a.n N=C+B2CB22
3 flt4lem5a.r R=M+N+MN2
4 flt4lem5a.s S=M+NMN2
5 flt4lem5a.a φA
6 flt4lem5a.b φB
7 flt4lem5a.c φC
8 flt4lem5a.1 φ¬2A
9 flt4lem5a.2 φAgcdC=1
10 flt4lem5a.3 φA4+B4=C2
11 1 2 3 4 5 6 7 8 9 10 flt4lem5d φM=R2+S2
12 1 2 3 4 5 6 7 8 9 10 flt4lem5e φRgcdS=1RgcdM=1SgcdM=1RSMMRS=B22B2
13 12 simp2d φRSM
14 13 simp3d φM
15 13 simp1d φR
16 13 simp2d φS
17 15 16 nnmulcld φRS
18 12 simp3d φMRS=B22B2
19 18 simprd φB2
20 14 nnzd φM
21 15 nnzd φR
22 20 21 gcdcomd φMgcdR=RgcdM
23 12 simp1d φRgcdS=1RgcdM=1SgcdM=1
24 23 simp2d φRgcdM=1
25 22 24 eqtrd φMgcdR=1
26 16 nnzd φS
27 20 26 gcdcomd φMgcdS=SgcdM
28 23 simp3d φSgcdM=1
29 27 28 eqtrd φMgcdS=1
30 rpmul MRSMgcdR=1MgcdS=1MgcdRS=1
31 20 21 26 30 syl3anc φMgcdR=1MgcdS=1MgcdRS=1
32 25 29 31 mp2and φMgcdRS=1
33 18 simpld φMRS=B22
34 14 17 19 32 33 flt4lem4 φM=MgcdB22RS=RSgcdB22
35 34 simpld φM=MgcdB22
36 14 16 nnmulcld φMS
37 36 nnzd φMS
38 37 21 gcdcomd φMSgcdR=RgcdMS
39 23 simp1d φRgcdS=1
40 rpmul RMSRgcdM=1RgcdS=1RgcdMS=1
41 21 20 26 40 syl3anc φRgcdM=1RgcdS=1RgcdMS=1
42 24 39 41 mp2and φRgcdMS=1
43 38 42 eqtrd φMSgcdR=1
44 14 nncnd φM
45 16 nncnd φS
46 15 nncnd φR
47 44 45 46 mul32d φMSR=MRS
48 44 46 45 mulassd φMRS=MRS
49 48 33 eqtrd φMRS=B22
50 47 49 eqtrd φMSR=B22
51 36 15 19 43 50 flt4lem4 φMS=MSgcdB22R=RgcdB22
52 51 simprd φR=RgcdB22
53 52 oveq1d φR2=RgcdB222
54 gcdnncl RB2RgcdB2
55 15 19 54 syl2anc φRgcdB2
56 55 nncnd φRgcdB2
57 56 flt4lem φRgcdB24=RgcdB222
58 53 57 eqtr4d φR2=RgcdB24
59 14 15 nnmulcld φMR
60 59 nnzd φMR
61 60 26 gcdcomd φMRgcdS=SgcdMR
62 26 21 gcdcomd φSgcdR=RgcdS
63 62 39 eqtrd φSgcdR=1
64 rpmul SMRSgcdM=1SgcdR=1SgcdMR=1
65 26 20 21 64 syl3anc φSgcdM=1SgcdR=1SgcdMR=1
66 28 63 65 mp2and φSgcdMR=1
67 61 66 eqtrd φMRgcdS=1
68 59 16 19 67 49 flt4lem4 φMR=MRgcdB22S=SgcdB22
69 68 simprd φS=SgcdB22
70 69 oveq1d φS2=SgcdB222
71 gcdnncl SB2SgcdB2
72 16 19 71 syl2anc φSgcdB2
73 72 nncnd φSgcdB2
74 73 flt4lem φSgcdB24=SgcdB222
75 70 74 eqtr4d φS2=SgcdB24
76 58 75 oveq12d φR2+S2=RgcdB24+SgcdB24
77 11 35 76 3eqtr3d φMgcdB22=RgcdB24+SgcdB24