| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flt4lem5a.m |
|
| 2 |
|
flt4lem5a.n |
|
| 3 |
|
flt4lem5a.r |
|
| 4 |
|
flt4lem5a.s |
|
| 5 |
|
flt4lem5a.a |
|
| 6 |
|
flt4lem5a.b |
|
| 7 |
|
flt4lem5a.c |
|
| 8 |
|
flt4lem5a.1 |
|
| 9 |
|
flt4lem5a.2 |
|
| 10 |
|
flt4lem5a.3 |
|
| 11 |
1 2 3 4 5 6 7 8 9 10
|
flt4lem5d |
|
| 12 |
1 2 3 4 5 6 7 8 9 10
|
flt4lem5e |
|
| 13 |
12
|
simp2d |
|
| 14 |
13
|
simp3d |
|
| 15 |
13
|
simp1d |
|
| 16 |
13
|
simp2d |
|
| 17 |
15 16
|
nnmulcld |
|
| 18 |
12
|
simp3d |
|
| 19 |
18
|
simprd |
|
| 20 |
14
|
nnzd |
|
| 21 |
15
|
nnzd |
|
| 22 |
20 21
|
gcdcomd |
|
| 23 |
12
|
simp1d |
|
| 24 |
23
|
simp2d |
|
| 25 |
22 24
|
eqtrd |
|
| 26 |
16
|
nnzd |
|
| 27 |
20 26
|
gcdcomd |
|
| 28 |
23
|
simp3d |
|
| 29 |
27 28
|
eqtrd |
|
| 30 |
|
rpmul |
|
| 31 |
20 21 26 30
|
syl3anc |
|
| 32 |
25 29 31
|
mp2and |
|
| 33 |
18
|
simpld |
|
| 34 |
14 17 19 32 33
|
flt4lem4 |
|
| 35 |
34
|
simpld |
|
| 36 |
14 16
|
nnmulcld |
|
| 37 |
36
|
nnzd |
|
| 38 |
37 21
|
gcdcomd |
|
| 39 |
23
|
simp1d |
|
| 40 |
|
rpmul |
|
| 41 |
21 20 26 40
|
syl3anc |
|
| 42 |
24 39 41
|
mp2and |
|
| 43 |
38 42
|
eqtrd |
|
| 44 |
14
|
nncnd |
|
| 45 |
16
|
nncnd |
|
| 46 |
15
|
nncnd |
|
| 47 |
44 45 46
|
mul32d |
|
| 48 |
44 46 45
|
mulassd |
|
| 49 |
48 33
|
eqtrd |
|
| 50 |
47 49
|
eqtrd |
|
| 51 |
36 15 19 43 50
|
flt4lem4 |
|
| 52 |
51
|
simprd |
|
| 53 |
52
|
oveq1d |
|
| 54 |
|
gcdnncl |
|
| 55 |
15 19 54
|
syl2anc |
|
| 56 |
55
|
nncnd |
|
| 57 |
56
|
flt4lem |
|
| 58 |
53 57
|
eqtr4d |
|
| 59 |
14 15
|
nnmulcld |
|
| 60 |
59
|
nnzd |
|
| 61 |
60 26
|
gcdcomd |
|
| 62 |
26 21
|
gcdcomd |
|
| 63 |
62 39
|
eqtrd |
|
| 64 |
|
rpmul |
|
| 65 |
26 20 21 64
|
syl3anc |
|
| 66 |
28 63 65
|
mp2and |
|
| 67 |
61 66
|
eqtrd |
|
| 68 |
59 16 19 67 49
|
flt4lem4 |
|
| 69 |
68
|
simprd |
|
| 70 |
69
|
oveq1d |
|
| 71 |
|
gcdnncl |
|
| 72 |
16 19 71
|
syl2anc |
|
| 73 |
72
|
nncnd |
|
| 74 |
73
|
flt4lem |
|
| 75 |
70 74
|
eqtr4d |
|
| 76 |
58 75
|
oveq12d |
|
| 77 |
11 35 76
|
3eqtr3d |
|