Step |
Hyp |
Ref |
Expression |
1 |
|
flt4lem5a.m |
⊢ 𝑀 = ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) |
2 |
|
flt4lem5a.n |
⊢ 𝑁 = ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) |
3 |
|
flt4lem5a.r |
⊢ 𝑅 = ( ( ( √ ‘ ( 𝑀 + 𝑁 ) ) + ( √ ‘ ( 𝑀 − 𝑁 ) ) ) / 2 ) |
4 |
|
flt4lem5a.s |
⊢ 𝑆 = ( ( ( √ ‘ ( 𝑀 + 𝑁 ) ) − ( √ ‘ ( 𝑀 − 𝑁 ) ) ) / 2 ) |
5 |
|
flt4lem5a.a |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |
6 |
|
flt4lem5a.b |
⊢ ( 𝜑 → 𝐵 ∈ ℕ ) |
7 |
|
flt4lem5a.c |
⊢ ( 𝜑 → 𝐶 ∈ ℕ ) |
8 |
|
flt4lem5a.1 |
⊢ ( 𝜑 → ¬ 2 ∥ 𝐴 ) |
9 |
|
flt4lem5a.2 |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐶 ) = 1 ) |
10 |
|
flt4lem5a.3 |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) = ( 𝐶 ↑ 2 ) ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
flt4lem5d |
⊢ ( 𝜑 → 𝑀 = ( ( 𝑅 ↑ 2 ) + ( 𝑆 ↑ 2 ) ) ) |
12 |
1 2 3 4 5 6 7 8 9 10
|
flt4lem5e |
⊢ ( 𝜑 → ( ( ( 𝑅 gcd 𝑆 ) = 1 ∧ ( 𝑅 gcd 𝑀 ) = 1 ∧ ( 𝑆 gcd 𝑀 ) = 1 ) ∧ ( 𝑅 ∈ ℕ ∧ 𝑆 ∈ ℕ ∧ 𝑀 ∈ ℕ ) ∧ ( ( 𝑀 · ( 𝑅 · 𝑆 ) ) = ( ( 𝐵 / 2 ) ↑ 2 ) ∧ ( 𝐵 / 2 ) ∈ ℕ ) ) ) |
13 |
12
|
simp2d |
⊢ ( 𝜑 → ( 𝑅 ∈ ℕ ∧ 𝑆 ∈ ℕ ∧ 𝑀 ∈ ℕ ) ) |
14 |
13
|
simp3d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
15 |
13
|
simp1d |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
16 |
13
|
simp2d |
⊢ ( 𝜑 → 𝑆 ∈ ℕ ) |
17 |
15 16
|
nnmulcld |
⊢ ( 𝜑 → ( 𝑅 · 𝑆 ) ∈ ℕ ) |
18 |
12
|
simp3d |
⊢ ( 𝜑 → ( ( 𝑀 · ( 𝑅 · 𝑆 ) ) = ( ( 𝐵 / 2 ) ↑ 2 ) ∧ ( 𝐵 / 2 ) ∈ ℕ ) ) |
19 |
18
|
simprd |
⊢ ( 𝜑 → ( 𝐵 / 2 ) ∈ ℕ ) |
20 |
14
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
21 |
15
|
nnzd |
⊢ ( 𝜑 → 𝑅 ∈ ℤ ) |
22 |
20 21
|
gcdcomd |
⊢ ( 𝜑 → ( 𝑀 gcd 𝑅 ) = ( 𝑅 gcd 𝑀 ) ) |
23 |
12
|
simp1d |
⊢ ( 𝜑 → ( ( 𝑅 gcd 𝑆 ) = 1 ∧ ( 𝑅 gcd 𝑀 ) = 1 ∧ ( 𝑆 gcd 𝑀 ) = 1 ) ) |
24 |
23
|
simp2d |
⊢ ( 𝜑 → ( 𝑅 gcd 𝑀 ) = 1 ) |
25 |
22 24
|
eqtrd |
⊢ ( 𝜑 → ( 𝑀 gcd 𝑅 ) = 1 ) |
26 |
16
|
nnzd |
⊢ ( 𝜑 → 𝑆 ∈ ℤ ) |
27 |
20 26
|
gcdcomd |
⊢ ( 𝜑 → ( 𝑀 gcd 𝑆 ) = ( 𝑆 gcd 𝑀 ) ) |
28 |
23
|
simp3d |
⊢ ( 𝜑 → ( 𝑆 gcd 𝑀 ) = 1 ) |
29 |
27 28
|
eqtrd |
⊢ ( 𝜑 → ( 𝑀 gcd 𝑆 ) = 1 ) |
30 |
|
rpmul |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑆 ∈ ℤ ) → ( ( ( 𝑀 gcd 𝑅 ) = 1 ∧ ( 𝑀 gcd 𝑆 ) = 1 ) → ( 𝑀 gcd ( 𝑅 · 𝑆 ) ) = 1 ) ) |
31 |
20 21 26 30
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑀 gcd 𝑅 ) = 1 ∧ ( 𝑀 gcd 𝑆 ) = 1 ) → ( 𝑀 gcd ( 𝑅 · 𝑆 ) ) = 1 ) ) |
32 |
25 29 31
|
mp2and |
⊢ ( 𝜑 → ( 𝑀 gcd ( 𝑅 · 𝑆 ) ) = 1 ) |
33 |
18
|
simpld |
⊢ ( 𝜑 → ( 𝑀 · ( 𝑅 · 𝑆 ) ) = ( ( 𝐵 / 2 ) ↑ 2 ) ) |
34 |
14 17 19 32 33
|
flt4lem4 |
⊢ ( 𝜑 → ( 𝑀 = ( ( 𝑀 gcd ( 𝐵 / 2 ) ) ↑ 2 ) ∧ ( 𝑅 · 𝑆 ) = ( ( ( 𝑅 · 𝑆 ) gcd ( 𝐵 / 2 ) ) ↑ 2 ) ) ) |
35 |
34
|
simpld |
⊢ ( 𝜑 → 𝑀 = ( ( 𝑀 gcd ( 𝐵 / 2 ) ) ↑ 2 ) ) |
36 |
14 16
|
nnmulcld |
⊢ ( 𝜑 → ( 𝑀 · 𝑆 ) ∈ ℕ ) |
37 |
36
|
nnzd |
⊢ ( 𝜑 → ( 𝑀 · 𝑆 ) ∈ ℤ ) |
38 |
37 21
|
gcdcomd |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑆 ) gcd 𝑅 ) = ( 𝑅 gcd ( 𝑀 · 𝑆 ) ) ) |
39 |
23
|
simp1d |
⊢ ( 𝜑 → ( 𝑅 gcd 𝑆 ) = 1 ) |
40 |
|
rpmul |
⊢ ( ( 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑆 ∈ ℤ ) → ( ( ( 𝑅 gcd 𝑀 ) = 1 ∧ ( 𝑅 gcd 𝑆 ) = 1 ) → ( 𝑅 gcd ( 𝑀 · 𝑆 ) ) = 1 ) ) |
41 |
21 20 26 40
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑅 gcd 𝑀 ) = 1 ∧ ( 𝑅 gcd 𝑆 ) = 1 ) → ( 𝑅 gcd ( 𝑀 · 𝑆 ) ) = 1 ) ) |
42 |
24 39 41
|
mp2and |
⊢ ( 𝜑 → ( 𝑅 gcd ( 𝑀 · 𝑆 ) ) = 1 ) |
43 |
38 42
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑆 ) gcd 𝑅 ) = 1 ) |
44 |
14
|
nncnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
45 |
16
|
nncnd |
⊢ ( 𝜑 → 𝑆 ∈ ℂ ) |
46 |
15
|
nncnd |
⊢ ( 𝜑 → 𝑅 ∈ ℂ ) |
47 |
44 45 46
|
mul32d |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑆 ) · 𝑅 ) = ( ( 𝑀 · 𝑅 ) · 𝑆 ) ) |
48 |
44 46 45
|
mulassd |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑅 ) · 𝑆 ) = ( 𝑀 · ( 𝑅 · 𝑆 ) ) ) |
49 |
48 33
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑅 ) · 𝑆 ) = ( ( 𝐵 / 2 ) ↑ 2 ) ) |
50 |
47 49
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑆 ) · 𝑅 ) = ( ( 𝐵 / 2 ) ↑ 2 ) ) |
51 |
36 15 19 43 50
|
flt4lem4 |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑆 ) = ( ( ( 𝑀 · 𝑆 ) gcd ( 𝐵 / 2 ) ) ↑ 2 ) ∧ 𝑅 = ( ( 𝑅 gcd ( 𝐵 / 2 ) ) ↑ 2 ) ) ) |
52 |
51
|
simprd |
⊢ ( 𝜑 → 𝑅 = ( ( 𝑅 gcd ( 𝐵 / 2 ) ) ↑ 2 ) ) |
53 |
52
|
oveq1d |
⊢ ( 𝜑 → ( 𝑅 ↑ 2 ) = ( ( ( 𝑅 gcd ( 𝐵 / 2 ) ) ↑ 2 ) ↑ 2 ) ) |
54 |
|
gcdnncl |
⊢ ( ( 𝑅 ∈ ℕ ∧ ( 𝐵 / 2 ) ∈ ℕ ) → ( 𝑅 gcd ( 𝐵 / 2 ) ) ∈ ℕ ) |
55 |
15 19 54
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 gcd ( 𝐵 / 2 ) ) ∈ ℕ ) |
56 |
55
|
nncnd |
⊢ ( 𝜑 → ( 𝑅 gcd ( 𝐵 / 2 ) ) ∈ ℂ ) |
57 |
56
|
flt4lem |
⊢ ( 𝜑 → ( ( 𝑅 gcd ( 𝐵 / 2 ) ) ↑ 4 ) = ( ( ( 𝑅 gcd ( 𝐵 / 2 ) ) ↑ 2 ) ↑ 2 ) ) |
58 |
53 57
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑅 ↑ 2 ) = ( ( 𝑅 gcd ( 𝐵 / 2 ) ) ↑ 4 ) ) |
59 |
14 15
|
nnmulcld |
⊢ ( 𝜑 → ( 𝑀 · 𝑅 ) ∈ ℕ ) |
60 |
59
|
nnzd |
⊢ ( 𝜑 → ( 𝑀 · 𝑅 ) ∈ ℤ ) |
61 |
60 26
|
gcdcomd |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑅 ) gcd 𝑆 ) = ( 𝑆 gcd ( 𝑀 · 𝑅 ) ) ) |
62 |
26 21
|
gcdcomd |
⊢ ( 𝜑 → ( 𝑆 gcd 𝑅 ) = ( 𝑅 gcd 𝑆 ) ) |
63 |
62 39
|
eqtrd |
⊢ ( 𝜑 → ( 𝑆 gcd 𝑅 ) = 1 ) |
64 |
|
rpmul |
⊢ ( ( 𝑆 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℤ ) → ( ( ( 𝑆 gcd 𝑀 ) = 1 ∧ ( 𝑆 gcd 𝑅 ) = 1 ) → ( 𝑆 gcd ( 𝑀 · 𝑅 ) ) = 1 ) ) |
65 |
26 20 21 64
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑆 gcd 𝑀 ) = 1 ∧ ( 𝑆 gcd 𝑅 ) = 1 ) → ( 𝑆 gcd ( 𝑀 · 𝑅 ) ) = 1 ) ) |
66 |
28 63 65
|
mp2and |
⊢ ( 𝜑 → ( 𝑆 gcd ( 𝑀 · 𝑅 ) ) = 1 ) |
67 |
61 66
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑅 ) gcd 𝑆 ) = 1 ) |
68 |
59 16 19 67 49
|
flt4lem4 |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑅 ) = ( ( ( 𝑀 · 𝑅 ) gcd ( 𝐵 / 2 ) ) ↑ 2 ) ∧ 𝑆 = ( ( 𝑆 gcd ( 𝐵 / 2 ) ) ↑ 2 ) ) ) |
69 |
68
|
simprd |
⊢ ( 𝜑 → 𝑆 = ( ( 𝑆 gcd ( 𝐵 / 2 ) ) ↑ 2 ) ) |
70 |
69
|
oveq1d |
⊢ ( 𝜑 → ( 𝑆 ↑ 2 ) = ( ( ( 𝑆 gcd ( 𝐵 / 2 ) ) ↑ 2 ) ↑ 2 ) ) |
71 |
|
gcdnncl |
⊢ ( ( 𝑆 ∈ ℕ ∧ ( 𝐵 / 2 ) ∈ ℕ ) → ( 𝑆 gcd ( 𝐵 / 2 ) ) ∈ ℕ ) |
72 |
16 19 71
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 gcd ( 𝐵 / 2 ) ) ∈ ℕ ) |
73 |
72
|
nncnd |
⊢ ( 𝜑 → ( 𝑆 gcd ( 𝐵 / 2 ) ) ∈ ℂ ) |
74 |
73
|
flt4lem |
⊢ ( 𝜑 → ( ( 𝑆 gcd ( 𝐵 / 2 ) ) ↑ 4 ) = ( ( ( 𝑆 gcd ( 𝐵 / 2 ) ) ↑ 2 ) ↑ 2 ) ) |
75 |
70 74
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑆 ↑ 2 ) = ( ( 𝑆 gcd ( 𝐵 / 2 ) ) ↑ 4 ) ) |
76 |
58 75
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑅 ↑ 2 ) + ( 𝑆 ↑ 2 ) ) = ( ( ( 𝑅 gcd ( 𝐵 / 2 ) ) ↑ 4 ) + ( ( 𝑆 gcd ( 𝐵 / 2 ) ) ↑ 4 ) ) ) |
77 |
11 35 76
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑀 gcd ( 𝐵 / 2 ) ) ↑ 2 ) = ( ( ( 𝑅 gcd ( 𝐵 / 2 ) ) ↑ 4 ) + ( ( 𝑆 gcd ( 𝐵 / 2 ) ) ↑ 4 ) ) ) |