Step |
Hyp |
Ref |
Expression |
1 |
|
flt4lem5a.m |
⊢ 𝑀 = ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) + ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) |
2 |
|
flt4lem5a.n |
⊢ 𝑁 = ( ( ( √ ‘ ( 𝐶 + ( 𝐵 ↑ 2 ) ) ) − ( √ ‘ ( 𝐶 − ( 𝐵 ↑ 2 ) ) ) ) / 2 ) |
3 |
|
flt4lem5a.r |
⊢ 𝑅 = ( ( ( √ ‘ ( 𝑀 + 𝑁 ) ) + ( √ ‘ ( 𝑀 − 𝑁 ) ) ) / 2 ) |
4 |
|
flt4lem5a.s |
⊢ 𝑆 = ( ( ( √ ‘ ( 𝑀 + 𝑁 ) ) − ( √ ‘ ( 𝑀 − 𝑁 ) ) ) / 2 ) |
5 |
|
flt4lem5a.a |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |
6 |
|
flt4lem5a.b |
⊢ ( 𝜑 → 𝐵 ∈ ℕ ) |
7 |
|
flt4lem5a.c |
⊢ ( 𝜑 → 𝐶 ∈ ℕ ) |
8 |
|
flt4lem5a.1 |
⊢ ( 𝜑 → ¬ 2 ∥ 𝐴 ) |
9 |
|
flt4lem5a.2 |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐶 ) = 1 ) |
10 |
|
flt4lem5a.3 |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) = ( 𝐶 ↑ 2 ) ) |
11 |
5
|
nnsqcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℕ ) |
12 |
6
|
nnsqcld |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℕ ) |
13 |
|
2prm |
⊢ 2 ∈ ℙ |
14 |
5
|
nnzd |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
15 |
|
prmdvdssq |
⊢ ( ( 2 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 2 ∥ 𝐴 ↔ 2 ∥ ( 𝐴 ↑ 2 ) ) ) |
16 |
13 14 15
|
sylancr |
⊢ ( 𝜑 → ( 2 ∥ 𝐴 ↔ 2 ∥ ( 𝐴 ↑ 2 ) ) ) |
17 |
8 16
|
mtbid |
⊢ ( 𝜑 → ¬ 2 ∥ ( 𝐴 ↑ 2 ) ) |
18 |
|
2nn |
⊢ 2 ∈ ℕ |
19 |
18
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ ) |
20 |
|
rplpwr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ ∧ 2 ∈ ℕ ) → ( ( 𝐴 gcd 𝐶 ) = 1 → ( ( 𝐴 ↑ 2 ) gcd 𝐶 ) = 1 ) ) |
21 |
5 7 19 20
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐶 ) = 1 → ( ( 𝐴 ↑ 2 ) gcd 𝐶 ) = 1 ) ) |
22 |
9 21
|
mpd |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) gcd 𝐶 ) = 1 ) |
23 |
5
|
nncnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
24 |
23
|
flt4lem |
⊢ ( 𝜑 → ( 𝐴 ↑ 4 ) = ( ( 𝐴 ↑ 2 ) ↑ 2 ) ) |
25 |
6
|
nncnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
26 |
25
|
flt4lem |
⊢ ( 𝜑 → ( 𝐵 ↑ 4 ) = ( ( 𝐵 ↑ 2 ) ↑ 2 ) ) |
27 |
24 26
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) = ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) + ( ( 𝐵 ↑ 2 ) ↑ 2 ) ) ) |
28 |
27 10
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) + ( ( 𝐵 ↑ 2 ) ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) |
29 |
11 12 7 17 22 28
|
flt4lem1 |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) ∈ ℕ ∧ ( 𝐵 ↑ 2 ) ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) + ( ( 𝐵 ↑ 2 ) ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( ( 𝐴 ↑ 2 ) gcd ( 𝐵 ↑ 2 ) ) = 1 ∧ ¬ 2 ∥ ( 𝐴 ↑ 2 ) ) ) ) |
30 |
2
|
pythagtriplem13 |
⊢ ( ( ( ( 𝐴 ↑ 2 ) ∈ ℕ ∧ ( 𝐵 ↑ 2 ) ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) + ( ( 𝐵 ↑ 2 ) ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( ( 𝐴 ↑ 2 ) gcd ( 𝐵 ↑ 2 ) ) = 1 ∧ ¬ 2 ∥ ( 𝐴 ↑ 2 ) ) ) → 𝑁 ∈ ℕ ) |
31 |
29 30
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
32 |
1
|
pythagtriplem11 |
⊢ ( ( ( ( 𝐴 ↑ 2 ) ∈ ℕ ∧ ( 𝐵 ↑ 2 ) ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) + ( ( 𝐵 ↑ 2 ) ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( ( 𝐴 ↑ 2 ) gcd ( 𝐵 ↑ 2 ) ) = 1 ∧ ¬ 2 ∥ ( 𝐴 ↑ 2 ) ) ) → 𝑀 ∈ ℕ ) |
33 |
29 32
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
34 |
1 2 3 4 5 6 7 8 9 10
|
flt4lem5a |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) + ( 𝑁 ↑ 2 ) ) = ( 𝑀 ↑ 2 ) ) |
35 |
31
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
36 |
14 35
|
gcdcomd |
⊢ ( 𝜑 → ( 𝐴 gcd 𝑁 ) = ( 𝑁 gcd 𝐴 ) ) |
37 |
33
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
38 |
35 37
|
gcdcomd |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑀 ) = ( 𝑀 gcd 𝑁 ) ) |
39 |
1 2
|
flt4lem5 |
⊢ ( ( ( ( 𝐴 ↑ 2 ) ∈ ℕ ∧ ( 𝐵 ↑ 2 ) ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( ( 𝐴 ↑ 2 ) ↑ 2 ) + ( ( 𝐵 ↑ 2 ) ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( ( 𝐴 ↑ 2 ) gcd ( 𝐵 ↑ 2 ) ) = 1 ∧ ¬ 2 ∥ ( 𝐴 ↑ 2 ) ) ) → ( 𝑀 gcd 𝑁 ) = 1 ) |
40 |
29 39
|
syl |
⊢ ( 𝜑 → ( 𝑀 gcd 𝑁 ) = 1 ) |
41 |
38 40
|
eqtrd |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑀 ) = 1 ) |
42 |
31
|
nnsqcld |
⊢ ( 𝜑 → ( 𝑁 ↑ 2 ) ∈ ℕ ) |
43 |
42
|
nncnd |
⊢ ( 𝜑 → ( 𝑁 ↑ 2 ) ∈ ℂ ) |
44 |
11
|
nncnd |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
45 |
43 44
|
addcomd |
⊢ ( 𝜑 → ( ( 𝑁 ↑ 2 ) + ( 𝐴 ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) + ( 𝑁 ↑ 2 ) ) ) |
46 |
45 34
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑁 ↑ 2 ) + ( 𝐴 ↑ 2 ) ) = ( 𝑀 ↑ 2 ) ) |
47 |
31 5 33 41 46
|
fltabcoprm |
⊢ ( 𝜑 → ( 𝑁 gcd 𝐴 ) = 1 ) |
48 |
36 47
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 gcd 𝑁 ) = 1 ) |
49 |
3 4
|
pythagtriplem17 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝑁 ↑ 2 ) ) = ( 𝑀 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝑁 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝑀 = ( ( 𝑅 ↑ 2 ) + ( 𝑆 ↑ 2 ) ) ) |
50 |
5 31 33 34 48 8 49
|
syl312anc |
⊢ ( 𝜑 → 𝑀 = ( ( 𝑅 ↑ 2 ) + ( 𝑆 ↑ 2 ) ) ) |