Step |
Hyp |
Ref |
Expression |
1 |
|
flt4lem6.a |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |
2 |
|
flt4lem6.b |
⊢ ( 𝜑 → 𝐵 ∈ ℕ ) |
3 |
|
flt4lem6.c |
⊢ ( 𝜑 → 𝐶 ∈ ℕ ) |
4 |
|
flt4lem6.1 |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) = ( 𝐶 ↑ 2 ) ) |
5 |
2
|
nnzd |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
6 |
|
divgcdnn |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) |
7 |
1 5 6
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) |
8 |
1
|
nnzd |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
9 |
|
divgcdnnr |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐴 ∈ ℤ ) → ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) |
10 |
2 8 9
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) |
11 |
|
gcdnncl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
12 |
1 2 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
13 |
12
|
nncnd |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
14 |
13
|
flt4lem |
⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) ↑ 4 ) = ( ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ↑ 2 ) ) |
15 |
4 14
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) / ( ( 𝐴 gcd 𝐵 ) ↑ 4 ) ) = ( ( 𝐶 ↑ 2 ) / ( ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ↑ 2 ) ) ) |
16 |
1
|
nncnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
17 |
12
|
nnne0d |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) ≠ 0 ) |
18 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
19 |
18
|
a1i |
⊢ ( 𝜑 → 4 ∈ ℕ0 ) |
20 |
16 13 17 19
|
expdivd |
⊢ ( 𝜑 → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ↑ 4 ) = ( ( 𝐴 ↑ 4 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 4 ) ) ) |
21 |
2
|
nncnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
22 |
21 13 17 19
|
expdivd |
⊢ ( 𝜑 → ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ↑ 4 ) = ( ( 𝐵 ↑ 4 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 4 ) ) ) |
23 |
20 22
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ↑ 4 ) + ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ↑ 4 ) ) = ( ( ( 𝐴 ↑ 4 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 4 ) ) + ( ( 𝐵 ↑ 4 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 4 ) ) ) ) |
24 |
16 19
|
expcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 4 ) ∈ ℂ ) |
25 |
21 19
|
expcld |
⊢ ( 𝜑 → ( 𝐵 ↑ 4 ) ∈ ℂ ) |
26 |
13 19
|
expcld |
⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) ↑ 4 ) ∈ ℂ ) |
27 |
12 19
|
nnexpcld |
⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) ↑ 4 ) ∈ ℕ ) |
28 |
27
|
nnne0d |
⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) ↑ 4 ) ≠ 0 ) |
29 |
24 25 26 28
|
divdird |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) / ( ( 𝐴 gcd 𝐵 ) ↑ 4 ) ) = ( ( ( 𝐴 ↑ 4 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 4 ) ) + ( ( 𝐵 ↑ 4 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 4 ) ) ) ) |
30 |
23 29
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ↑ 4 ) + ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ↑ 4 ) ) = ( ( ( 𝐴 ↑ 4 ) + ( 𝐵 ↑ 4 ) ) / ( ( 𝐴 gcd 𝐵 ) ↑ 4 ) ) ) |
31 |
3
|
nncnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
32 |
12
|
nnsqcld |
⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∈ ℕ ) |
33 |
32
|
nncnd |
⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∈ ℂ ) |
34 |
32
|
nnne0d |
⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ≠ 0 ) |
35 |
31 33 34
|
sqdivd |
⊢ ( 𝜑 → ( ( 𝐶 / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) ↑ 2 ) = ( ( 𝐶 ↑ 2 ) / ( ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ↑ 2 ) ) ) |
36 |
15 30 35
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ↑ 4 ) + ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ↑ 4 ) ) = ( ( 𝐶 / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) ↑ 2 ) ) |
37 |
7 19
|
nnexpcld |
⊢ ( 𝜑 → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ↑ 4 ) ∈ ℕ ) |
38 |
10 19
|
nnexpcld |
⊢ ( 𝜑 → ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ↑ 4 ) ∈ ℕ ) |
39 |
37 38
|
nnaddcld |
⊢ ( 𝜑 → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ↑ 4 ) + ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ↑ 4 ) ) ∈ ℕ ) |
40 |
39
|
nnzd |
⊢ ( 𝜑 → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ↑ 4 ) + ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ↑ 4 ) ) ∈ ℤ ) |
41 |
36 40
|
eqeltrrd |
⊢ ( 𝜑 → ( ( 𝐶 / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) ↑ 2 ) ∈ ℤ ) |
42 |
3
|
nnzd |
⊢ ( 𝜑 → 𝐶 ∈ ℤ ) |
43 |
|
znq |
⊢ ( ( 𝐶 ∈ ℤ ∧ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∈ ℕ ) → ( 𝐶 / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) ∈ ℚ ) |
44 |
42 32 43
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) ∈ ℚ ) |
45 |
3
|
nnred |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
46 |
32
|
nnred |
⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∈ ℝ ) |
47 |
3
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝐶 ) |
48 |
32
|
nngt0d |
⊢ ( 𝜑 → 0 < ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) |
49 |
45 46 47 48
|
divgt0d |
⊢ ( 𝜑 → 0 < ( 𝐶 / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) ) |
50 |
41 44 49
|
posqsqznn |
⊢ ( 𝜑 → ( 𝐶 / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) ∈ ℕ ) |
51 |
7 10 50
|
3jca |
⊢ ( 𝜑 → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ∧ ( 𝐶 / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) ∈ ℕ ) ) |
52 |
51 36
|
jca |
⊢ ( 𝜑 → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ∧ ( 𝐶 / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) ∈ ℕ ) ∧ ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ↑ 4 ) + ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ↑ 4 ) ) = ( ( 𝐶 / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) ↑ 2 ) ) ) |