| Step |
Hyp |
Ref |
Expression |
| 1 |
|
divides |
|
| 2 |
1
|
3adant3 |
|
| 3 |
|
simpl1 |
|
| 4 |
|
nnnn0 |
|
| 5 |
4
|
3ad2ant3 |
|
| 6 |
5
|
adantr |
|
| 7 |
|
zexpcl |
|
| 8 |
3 6 7
|
syl2anc |
|
| 9 |
|
simpr |
|
| 10 |
|
zexpcl |
|
| 11 |
9 6 10
|
syl2anc |
|
| 12 |
11 8
|
zmulcld |
|
| 13 |
|
simpl3 |
|
| 14 |
|
iddvdsexp |
|
| 15 |
3 13 14
|
syl2anc |
|
| 16 |
|
dvdsmul2 |
|
| 17 |
11 8 16
|
syl2anc |
|
| 18 |
3 8 12 15 17
|
dvdstrd |
|
| 19 |
|
zcn |
|
| 20 |
19
|
adantl |
|
| 21 |
|
zcn |
|
| 22 |
21
|
3ad2ant1 |
|
| 23 |
22
|
adantr |
|
| 24 |
20 23 6
|
mulexpd |
|
| 25 |
18 24
|
breqtrrd |
|
| 26 |
|
oveq1 |
|
| 27 |
26
|
breq2d |
|
| 28 |
25 27
|
syl5ibcom |
|
| 29 |
28
|
rexlimdva |
|
| 30 |
2 29
|
sylbid |
|