Step |
Hyp |
Ref |
Expression |
1 |
|
snidg |
|- ( Y e. V -> Y e. { Y } ) |
2 |
1
|
anim2i |
|- ( ( X e. A /\ Y e. V ) -> ( X e. A /\ Y e. { Y } ) ) |
3 |
|
eqid |
|- X = X |
4 |
2 3
|
jctir |
|- ( ( X e. A /\ Y e. V ) -> ( ( X e. A /\ Y e. { Y } ) /\ X = X ) ) |
5 |
|
opex |
|- <. X , Y >. e. _V |
6 |
|
brcnvg |
|- ( ( X e. A /\ <. X , Y >. e. _V ) -> ( X `' ( 1st |` ( A X. { Y } ) ) <. X , Y >. <-> <. X , Y >. ( 1st |` ( A X. { Y } ) ) X ) ) |
7 |
5 6
|
mpan2 |
|- ( X e. A -> ( X `' ( 1st |` ( A X. { Y } ) ) <. X , Y >. <-> <. X , Y >. ( 1st |` ( A X. { Y } ) ) X ) ) |
8 |
|
brres |
|- ( X e. A -> ( <. X , Y >. ( 1st |` ( A X. { Y } ) ) X <-> ( <. X , Y >. e. ( A X. { Y } ) /\ <. X , Y >. 1st X ) ) ) |
9 |
7 8
|
bitrd |
|- ( X e. A -> ( X `' ( 1st |` ( A X. { Y } ) ) <. X , Y >. <-> ( <. X , Y >. e. ( A X. { Y } ) /\ <. X , Y >. 1st X ) ) ) |
10 |
9
|
adantr |
|- ( ( X e. A /\ Y e. V ) -> ( X `' ( 1st |` ( A X. { Y } ) ) <. X , Y >. <-> ( <. X , Y >. e. ( A X. { Y } ) /\ <. X , Y >. 1st X ) ) ) |
11 |
|
opelxp |
|- ( <. X , Y >. e. ( A X. { Y } ) <-> ( X e. A /\ Y e. { Y } ) ) |
12 |
11
|
anbi1i |
|- ( ( <. X , Y >. e. ( A X. { Y } ) /\ <. X , Y >. 1st X ) <-> ( ( X e. A /\ Y e. { Y } ) /\ <. X , Y >. 1st X ) ) |
13 |
|
br1steqg |
|- ( ( X e. A /\ Y e. V ) -> ( <. X , Y >. 1st X <-> X = X ) ) |
14 |
13
|
anbi2d |
|- ( ( X e. A /\ Y e. V ) -> ( ( ( X e. A /\ Y e. { Y } ) /\ <. X , Y >. 1st X ) <-> ( ( X e. A /\ Y e. { Y } ) /\ X = X ) ) ) |
15 |
12 14
|
syl5bb |
|- ( ( X e. A /\ Y e. V ) -> ( ( <. X , Y >. e. ( A X. { Y } ) /\ <. X , Y >. 1st X ) <-> ( ( X e. A /\ Y e. { Y } ) /\ X = X ) ) ) |
16 |
10 15
|
bitrd |
|- ( ( X e. A /\ Y e. V ) -> ( X `' ( 1st |` ( A X. { Y } ) ) <. X , Y >. <-> ( ( X e. A /\ Y e. { Y } ) /\ X = X ) ) ) |
17 |
4 16
|
mpbird |
|- ( ( X e. A /\ Y e. V ) -> X `' ( 1st |` ( A X. { Y } ) ) <. X , Y >. ) |
18 |
|
1stconst |
|- ( Y e. V -> ( 1st |` ( A X. { Y } ) ) : ( A X. { Y } ) -1-1-onto-> A ) |
19 |
|
f1ocnv |
|- ( ( 1st |` ( A X. { Y } ) ) : ( A X. { Y } ) -1-1-onto-> A -> `' ( 1st |` ( A X. { Y } ) ) : A -1-1-onto-> ( A X. { Y } ) ) |
20 |
|
f1ofn |
|- ( `' ( 1st |` ( A X. { Y } ) ) : A -1-1-onto-> ( A X. { Y } ) -> `' ( 1st |` ( A X. { Y } ) ) Fn A ) |
21 |
18 19 20
|
3syl |
|- ( Y e. V -> `' ( 1st |` ( A X. { Y } ) ) Fn A ) |
22 |
|
simpl |
|- ( ( X e. A /\ Y e. V ) -> X e. A ) |
23 |
|
fnbrfvb |
|- ( ( `' ( 1st |` ( A X. { Y } ) ) Fn A /\ X e. A ) -> ( ( `' ( 1st |` ( A X. { Y } ) ) ` X ) = <. X , Y >. <-> X `' ( 1st |` ( A X. { Y } ) ) <. X , Y >. ) ) |
24 |
21 22 23
|
syl2an2 |
|- ( ( X e. A /\ Y e. V ) -> ( ( `' ( 1st |` ( A X. { Y } ) ) ` X ) = <. X , Y >. <-> X `' ( 1st |` ( A X. { Y } ) ) <. X , Y >. ) ) |
25 |
17 24
|
mpbird |
|- ( ( X e. A /\ Y e. V ) -> ( `' ( 1st |` ( A X. { Y } ) ) ` X ) = <. X , Y >. ) |