Step |
Hyp |
Ref |
Expression |
1 |
|
pweq |
|- ( x = y -> ~P x = ~P y ) |
2 |
1
|
sseq1d |
|- ( x = y -> ( ~P x C_ u <-> ~P y C_ u ) ) |
3 |
1
|
eleq1d |
|- ( x = y -> ( ~P x e. u <-> ~P y e. u ) ) |
4 |
2 3
|
anbi12d |
|- ( x = y -> ( ( ~P x C_ u /\ ~P x e. u ) <-> ( ~P y C_ u /\ ~P y e. u ) ) ) |
5 |
4
|
rspcva |
|- ( ( y e. u /\ A. x e. u ( ~P x C_ u /\ ~P x e. u ) ) -> ( ~P y C_ u /\ ~P y e. u ) ) |
6 |
5
|
simpld |
|- ( ( y e. u /\ A. x e. u ( ~P x C_ u /\ ~P x e. u ) ) -> ~P y C_ u ) |
7 |
|
rabss |
|- ( { x e. ~P u | x ~< u } C_ u <-> A. x e. ~P u ( x ~< u -> x e. u ) ) |
8 |
7
|
biimpri |
|- ( A. x e. ~P u ( x ~< u -> x e. u ) -> { x e. ~P u | x ~< u } C_ u ) |
9 |
|
vex |
|- y e. _V |
10 |
9
|
canth2 |
|- y ~< ~P y |
11 |
|
sdomdom |
|- ( y ~< ~P y -> y ~<_ ~P y ) |
12 |
10 11
|
ax-mp |
|- y ~<_ ~P y |
13 |
|
ssdomg |
|- ( u e. _V -> ( ~P y C_ u -> ~P y ~<_ u ) ) |
14 |
13
|
elv |
|- ( ~P y C_ u -> ~P y ~<_ u ) |
15 |
|
domtr |
|- ( ( y ~<_ ~P y /\ ~P y ~<_ u ) -> y ~<_ u ) |
16 |
12 14 15
|
sylancr |
|- ( ~P y C_ u -> y ~<_ u ) |
17 |
|
vex |
|- u e. _V |
18 |
|
tskwe |
|- ( ( u e. _V /\ { x e. ~P u | x ~< u } C_ u ) -> u e. dom card ) |
19 |
17 18
|
mpan |
|- ( { x e. ~P u | x ~< u } C_ u -> u e. dom card ) |
20 |
|
numdom |
|- ( ( u e. dom card /\ y ~<_ u ) -> y e. dom card ) |
21 |
20
|
expcom |
|- ( y ~<_ u -> ( u e. dom card -> y e. dom card ) ) |
22 |
16 19 21
|
syl2im |
|- ( ~P y C_ u -> ( { x e. ~P u | x ~< u } C_ u -> y e. dom card ) ) |
23 |
6 8 22
|
syl2im |
|- ( ( y e. u /\ A. x e. u ( ~P x C_ u /\ ~P x e. u ) ) -> ( A. x e. ~P u ( x ~< u -> x e. u ) -> y e. dom card ) ) |
24 |
23
|
3impia |
|- ( ( y e. u /\ A. x e. u ( ~P x C_ u /\ ~P x e. u ) /\ A. x e. ~P u ( x ~< u -> x e. u ) ) -> y e. dom card ) |
25 |
|
axgroth6 |
|- E. u ( y e. u /\ A. x e. u ( ~P x C_ u /\ ~P x e. u ) /\ A. x e. ~P u ( x ~< u -> x e. u ) ) |
26 |
24 25
|
exlimiiv |
|- y e. dom card |
27 |
26 9
|
2th |
|- ( y e. dom card <-> y e. _V ) |
28 |
27
|
eqriv |
|- dom card = _V |