Step |
Hyp |
Ref |
Expression |
1 |
|
pweq |
⊢ ( 𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦 ) |
2 |
1
|
sseq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝒫 𝑥 ⊆ 𝑢 ↔ 𝒫 𝑦 ⊆ 𝑢 ) ) |
3 |
1
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝒫 𝑥 ∈ 𝑢 ↔ 𝒫 𝑦 ∈ 𝑢 ) ) |
4 |
2 3
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝒫 𝑥 ⊆ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ) ↔ ( 𝒫 𝑦 ⊆ 𝑢 ∧ 𝒫 𝑦 ∈ 𝑢 ) ) ) |
5 |
4
|
rspcva |
⊢ ( ( 𝑦 ∈ 𝑢 ∧ ∀ 𝑥 ∈ 𝑢 ( 𝒫 𝑥 ⊆ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ) ) → ( 𝒫 𝑦 ⊆ 𝑢 ∧ 𝒫 𝑦 ∈ 𝑢 ) ) |
6 |
5
|
simpld |
⊢ ( ( 𝑦 ∈ 𝑢 ∧ ∀ 𝑥 ∈ 𝑢 ( 𝒫 𝑥 ⊆ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ) ) → 𝒫 𝑦 ⊆ 𝑢 ) |
7 |
|
rabss |
⊢ ( { 𝑥 ∈ 𝒫 𝑢 ∣ 𝑥 ≺ 𝑢 } ⊆ 𝑢 ↔ ∀ 𝑥 ∈ 𝒫 𝑢 ( 𝑥 ≺ 𝑢 → 𝑥 ∈ 𝑢 ) ) |
8 |
7
|
biimpri |
⊢ ( ∀ 𝑥 ∈ 𝒫 𝑢 ( 𝑥 ≺ 𝑢 → 𝑥 ∈ 𝑢 ) → { 𝑥 ∈ 𝒫 𝑢 ∣ 𝑥 ≺ 𝑢 } ⊆ 𝑢 ) |
9 |
|
vex |
⊢ 𝑦 ∈ V |
10 |
9
|
canth2 |
⊢ 𝑦 ≺ 𝒫 𝑦 |
11 |
|
sdomdom |
⊢ ( 𝑦 ≺ 𝒫 𝑦 → 𝑦 ≼ 𝒫 𝑦 ) |
12 |
10 11
|
ax-mp |
⊢ 𝑦 ≼ 𝒫 𝑦 |
13 |
|
ssdomg |
⊢ ( 𝑢 ∈ V → ( 𝒫 𝑦 ⊆ 𝑢 → 𝒫 𝑦 ≼ 𝑢 ) ) |
14 |
13
|
elv |
⊢ ( 𝒫 𝑦 ⊆ 𝑢 → 𝒫 𝑦 ≼ 𝑢 ) |
15 |
|
domtr |
⊢ ( ( 𝑦 ≼ 𝒫 𝑦 ∧ 𝒫 𝑦 ≼ 𝑢 ) → 𝑦 ≼ 𝑢 ) |
16 |
12 14 15
|
sylancr |
⊢ ( 𝒫 𝑦 ⊆ 𝑢 → 𝑦 ≼ 𝑢 ) |
17 |
|
vex |
⊢ 𝑢 ∈ V |
18 |
|
tskwe |
⊢ ( ( 𝑢 ∈ V ∧ { 𝑥 ∈ 𝒫 𝑢 ∣ 𝑥 ≺ 𝑢 } ⊆ 𝑢 ) → 𝑢 ∈ dom card ) |
19 |
17 18
|
mpan |
⊢ ( { 𝑥 ∈ 𝒫 𝑢 ∣ 𝑥 ≺ 𝑢 } ⊆ 𝑢 → 𝑢 ∈ dom card ) |
20 |
|
numdom |
⊢ ( ( 𝑢 ∈ dom card ∧ 𝑦 ≼ 𝑢 ) → 𝑦 ∈ dom card ) |
21 |
20
|
expcom |
⊢ ( 𝑦 ≼ 𝑢 → ( 𝑢 ∈ dom card → 𝑦 ∈ dom card ) ) |
22 |
16 19 21
|
syl2im |
⊢ ( 𝒫 𝑦 ⊆ 𝑢 → ( { 𝑥 ∈ 𝒫 𝑢 ∣ 𝑥 ≺ 𝑢 } ⊆ 𝑢 → 𝑦 ∈ dom card ) ) |
23 |
6 8 22
|
syl2im |
⊢ ( ( 𝑦 ∈ 𝑢 ∧ ∀ 𝑥 ∈ 𝑢 ( 𝒫 𝑥 ⊆ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ) ) → ( ∀ 𝑥 ∈ 𝒫 𝑢 ( 𝑥 ≺ 𝑢 → 𝑥 ∈ 𝑢 ) → 𝑦 ∈ dom card ) ) |
24 |
23
|
3impia |
⊢ ( ( 𝑦 ∈ 𝑢 ∧ ∀ 𝑥 ∈ 𝑢 ( 𝒫 𝑥 ⊆ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑢 ( 𝑥 ≺ 𝑢 → 𝑥 ∈ 𝑢 ) ) → 𝑦 ∈ dom card ) |
25 |
|
axgroth6 |
⊢ ∃ 𝑢 ( 𝑦 ∈ 𝑢 ∧ ∀ 𝑥 ∈ 𝑢 ( 𝒫 𝑥 ⊆ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ) ∧ ∀ 𝑥 ∈ 𝒫 𝑢 ( 𝑥 ≺ 𝑢 → 𝑥 ∈ 𝑢 ) ) |
26 |
24 25
|
exlimiiv |
⊢ 𝑦 ∈ dom card |
27 |
26 9
|
2th |
⊢ ( 𝑦 ∈ dom card ↔ 𝑦 ∈ V ) |
28 |
27
|
eqriv |
⊢ dom card = V |