| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cardidm |  |-  ( card ` ( card ` A ) ) = ( card ` A ) | 
						
							| 2 |  | cardom |  |-  ( card ` _om ) = _om | 
						
							| 3 |  | simpr |  |-  ( ( A e. dom card /\ _om ~<_ A ) -> _om ~<_ A ) | 
						
							| 4 |  | omelon |  |-  _om e. On | 
						
							| 5 |  | onenon |  |-  ( _om e. On -> _om e. dom card ) | 
						
							| 6 | 4 5 | ax-mp |  |-  _om e. dom card | 
						
							| 7 |  | simpl |  |-  ( ( A e. dom card /\ _om ~<_ A ) -> A e. dom card ) | 
						
							| 8 |  | carddom2 |  |-  ( ( _om e. dom card /\ A e. dom card ) -> ( ( card ` _om ) C_ ( card ` A ) <-> _om ~<_ A ) ) | 
						
							| 9 | 6 7 8 | sylancr |  |-  ( ( A e. dom card /\ _om ~<_ A ) -> ( ( card ` _om ) C_ ( card ` A ) <-> _om ~<_ A ) ) | 
						
							| 10 | 3 9 | mpbird |  |-  ( ( A e. dom card /\ _om ~<_ A ) -> ( card ` _om ) C_ ( card ` A ) ) | 
						
							| 11 | 2 10 | eqsstrrid |  |-  ( ( A e. dom card /\ _om ~<_ A ) -> _om C_ ( card ` A ) ) | 
						
							| 12 |  | cardalephex |  |-  ( _om C_ ( card ` A ) -> ( ( card ` ( card ` A ) ) = ( card ` A ) <-> E. x e. On ( card ` A ) = ( aleph ` x ) ) ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( A e. dom card /\ _om ~<_ A ) -> ( ( card ` ( card ` A ) ) = ( card ` A ) <-> E. x e. On ( card ` A ) = ( aleph ` x ) ) ) | 
						
							| 14 | 1 13 | mpbii |  |-  ( ( A e. dom card /\ _om ~<_ A ) -> E. x e. On ( card ` A ) = ( aleph ` x ) ) | 
						
							| 15 |  | eqcom |  |-  ( ( card ` A ) = ( aleph ` x ) <-> ( aleph ` x ) = ( card ` A ) ) | 
						
							| 16 | 15 | rexbii |  |-  ( E. x e. On ( card ` A ) = ( aleph ` x ) <-> E. x e. On ( aleph ` x ) = ( card ` A ) ) | 
						
							| 17 | 14 16 | sylib |  |-  ( ( A e. dom card /\ _om ~<_ A ) -> E. x e. On ( aleph ` x ) = ( card ` A ) ) | 
						
							| 18 |  | alephfnon |  |-  aleph Fn On | 
						
							| 19 |  | fvelrnb |  |-  ( aleph Fn On -> ( ( card ` A ) e. ran aleph <-> E. x e. On ( aleph ` x ) = ( card ` A ) ) ) | 
						
							| 20 | 18 19 | ax-mp |  |-  ( ( card ` A ) e. ran aleph <-> E. x e. On ( aleph ` x ) = ( card ` A ) ) | 
						
							| 21 | 17 20 | sylibr |  |-  ( ( A e. dom card /\ _om ~<_ A ) -> ( card ` A ) e. ran aleph ) | 
						
							| 22 |  | cardid2 |  |-  ( A e. dom card -> ( card ` A ) ~~ A ) | 
						
							| 23 | 22 | adantr |  |-  ( ( A e. dom card /\ _om ~<_ A ) -> ( card ` A ) ~~ A ) | 
						
							| 24 |  | breq1 |  |-  ( x = ( card ` A ) -> ( x ~~ A <-> ( card ` A ) ~~ A ) ) | 
						
							| 25 | 24 | rspcev |  |-  ( ( ( card ` A ) e. ran aleph /\ ( card ` A ) ~~ A ) -> E. x e. ran aleph x ~~ A ) | 
						
							| 26 | 21 23 25 | syl2anc |  |-  ( ( A e. dom card /\ _om ~<_ A ) -> E. x e. ran aleph x ~~ A ) |