| Step | Hyp | Ref | Expression | 
						
							| 1 |  | intlewftc.1 |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | intlewftc.2 |  |-  ( ph -> B e. RR ) | 
						
							| 3 |  | intlewftc.3 |  |-  ( ph -> A <_ B ) | 
						
							| 4 |  | intlewftc.4 |  |-  ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) | 
						
							| 5 |  | intlewftc.5 |  |-  ( ph -> G e. ( ( A [,] B ) -cn-> RR ) ) | 
						
							| 6 |  | intlewftc.6 |  |-  ( ph -> D = ( RR _D F ) ) | 
						
							| 7 |  | intlewftc.7 |  |-  ( ph -> E = ( RR _D G ) ) | 
						
							| 8 |  | intlewftc.8 |  |-  ( ph -> D e. ( ( A (,) B ) -cn-> RR ) ) | 
						
							| 9 |  | intlewftc.9 |  |-  ( ph -> E e. ( ( A (,) B ) -cn-> RR ) ) | 
						
							| 10 |  | intlewftc.10 |  |-  ( ph -> D e. L^1 ) | 
						
							| 11 |  | intlewftc.11 |  |-  ( ph -> E e. L^1 ) | 
						
							| 12 |  | intlewftc.12 |  |-  ( ph -> D = ( x e. ( A (,) B ) |-> P ) ) | 
						
							| 13 |  | intlewftc.13 |  |-  ( ph -> E = ( x e. ( A (,) B ) |-> Q ) ) | 
						
							| 14 |  | intlewftc.14 |  |-  ( ( ph /\ x e. ( A (,) B ) ) -> P <_ Q ) | 
						
							| 15 |  | intlewftc.15 |  |-  ( ph -> ( F ` A ) <_ ( G ` A ) ) | 
						
							| 16 |  | cncff |  |-  ( F e. ( ( A [,] B ) -cn-> RR ) -> F : ( A [,] B ) --> RR ) | 
						
							| 17 | 4 16 | syl |  |-  ( ph -> F : ( A [,] B ) --> RR ) | 
						
							| 18 | 2 | leidd |  |-  ( ph -> B <_ B ) | 
						
							| 19 | 2 3 18 | 3jca |  |-  ( ph -> ( B e. RR /\ A <_ B /\ B <_ B ) ) | 
						
							| 20 |  | elicc2 |  |-  ( ( A e. RR /\ B e. RR ) -> ( B e. ( A [,] B ) <-> ( B e. RR /\ A <_ B /\ B <_ B ) ) ) | 
						
							| 21 | 1 2 20 | syl2anc |  |-  ( ph -> ( B e. ( A [,] B ) <-> ( B e. RR /\ A <_ B /\ B <_ B ) ) ) | 
						
							| 22 | 19 21 | mpbird |  |-  ( ph -> B e. ( A [,] B ) ) | 
						
							| 23 | 17 22 | ffvelcdmd |  |-  ( ph -> ( F ` B ) e. RR ) | 
						
							| 24 | 1 | leidd |  |-  ( ph -> A <_ A ) | 
						
							| 25 | 1 24 3 | 3jca |  |-  ( ph -> ( A e. RR /\ A <_ A /\ A <_ B ) ) | 
						
							| 26 |  | elicc2 |  |-  ( ( A e. RR /\ B e. RR ) -> ( A e. ( A [,] B ) <-> ( A e. RR /\ A <_ A /\ A <_ B ) ) ) | 
						
							| 27 | 1 2 26 | syl2anc |  |-  ( ph -> ( A e. ( A [,] B ) <-> ( A e. RR /\ A <_ A /\ A <_ B ) ) ) | 
						
							| 28 | 25 27 | mpbird |  |-  ( ph -> A e. ( A [,] B ) ) | 
						
							| 29 | 17 28 | ffvelcdmd |  |-  ( ph -> ( F ` A ) e. RR ) | 
						
							| 30 | 23 29 | resubcld |  |-  ( ph -> ( ( F ` B ) - ( F ` A ) ) e. RR ) | 
						
							| 31 |  | cncff |  |-  ( G e. ( ( A [,] B ) -cn-> RR ) -> G : ( A [,] B ) --> RR ) | 
						
							| 32 | 5 31 | syl |  |-  ( ph -> G : ( A [,] B ) --> RR ) | 
						
							| 33 | 32 22 | ffvelcdmd |  |-  ( ph -> ( G ` B ) e. RR ) | 
						
							| 34 | 32 28 | ffvelcdmd |  |-  ( ph -> ( G ` A ) e. RR ) | 
						
							| 35 | 33 34 | resubcld |  |-  ( ph -> ( ( G ` B ) - ( G ` A ) ) e. RR ) | 
						
							| 36 | 12 | eleq1d |  |-  ( ph -> ( D e. L^1 <-> ( x e. ( A (,) B ) |-> P ) e. L^1 ) ) | 
						
							| 37 | 10 36 | mpbid |  |-  ( ph -> ( x e. ( A (,) B ) |-> P ) e. L^1 ) | 
						
							| 38 | 13 | eleq1d |  |-  ( ph -> ( E e. L^1 <-> ( x e. ( A (,) B ) |-> Q ) e. L^1 ) ) | 
						
							| 39 | 11 38 | mpbid |  |-  ( ph -> ( x e. ( A (,) B ) |-> Q ) e. L^1 ) | 
						
							| 40 |  | cncff |  |-  ( D e. ( ( A (,) B ) -cn-> RR ) -> D : ( A (,) B ) --> RR ) | 
						
							| 41 | 8 40 | syl |  |-  ( ph -> D : ( A (,) B ) --> RR ) | 
						
							| 42 | 12 | feq1d |  |-  ( ph -> ( D : ( A (,) B ) --> RR <-> ( x e. ( A (,) B ) |-> P ) : ( A (,) B ) --> RR ) ) | 
						
							| 43 | 41 42 | mpbid |  |-  ( ph -> ( x e. ( A (,) B ) |-> P ) : ( A (,) B ) --> RR ) | 
						
							| 44 | 43 | fvmptelcdm |  |-  ( ( ph /\ x e. ( A (,) B ) ) -> P e. RR ) | 
						
							| 45 |  | cncff |  |-  ( E e. ( ( A (,) B ) -cn-> RR ) -> E : ( A (,) B ) --> RR ) | 
						
							| 46 | 9 45 | syl |  |-  ( ph -> E : ( A (,) B ) --> RR ) | 
						
							| 47 | 13 | feq1d |  |-  ( ph -> ( E : ( A (,) B ) --> RR <-> ( x e. ( A (,) B ) |-> Q ) : ( A (,) B ) --> RR ) ) | 
						
							| 48 | 46 47 | mpbid |  |-  ( ph -> ( x e. ( A (,) B ) |-> Q ) : ( A (,) B ) --> RR ) | 
						
							| 49 | 48 | fvmptelcdm |  |-  ( ( ph /\ x e. ( A (,) B ) ) -> Q e. RR ) | 
						
							| 50 | 37 39 44 49 14 | itgle |  |-  ( ph -> S. ( A (,) B ) P _d x <_ S. ( A (,) B ) Q _d x ) | 
						
							| 51 | 44 | itgmpt |  |-  ( ph -> S. ( A (,) B ) P _d x = S. ( A (,) B ) ( ( x e. ( A (,) B ) |-> P ) ` t ) _d t ) | 
						
							| 52 | 12 | fveq1d |  |-  ( ph -> ( D ` t ) = ( ( x e. ( A (,) B ) |-> P ) ` t ) ) | 
						
							| 53 | 52 | adantr |  |-  ( ( ph /\ t e. ( A (,) B ) ) -> ( D ` t ) = ( ( x e. ( A (,) B ) |-> P ) ` t ) ) | 
						
							| 54 | 53 | eqcomd |  |-  ( ( ph /\ t e. ( A (,) B ) ) -> ( ( x e. ( A (,) B ) |-> P ) ` t ) = ( D ` t ) ) | 
						
							| 55 | 54 | itgeq2dv |  |-  ( ph -> S. ( A (,) B ) ( ( x e. ( A (,) B ) |-> P ) ` t ) _d t = S. ( A (,) B ) ( D ` t ) _d t ) | 
						
							| 56 | 6 | adantr |  |-  ( ( ph /\ t e. ( A (,) B ) ) -> D = ( RR _D F ) ) | 
						
							| 57 | 56 | fveq1d |  |-  ( ( ph /\ t e. ( A (,) B ) ) -> ( D ` t ) = ( ( RR _D F ) ` t ) ) | 
						
							| 58 | 57 | itgeq2dv |  |-  ( ph -> S. ( A (,) B ) ( D ` t ) _d t = S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t ) | 
						
							| 59 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 60 | 59 | a1i |  |-  ( ph -> RR C_ CC ) | 
						
							| 61 |  | fss |  |-  ( ( D : ( A (,) B ) --> RR /\ RR C_ CC ) -> D : ( A (,) B ) --> CC ) | 
						
							| 62 | 41 60 61 | syl2anc |  |-  ( ph -> D : ( A (,) B ) --> CC ) | 
						
							| 63 |  | ssidd |  |-  ( ph -> CC C_ CC ) | 
						
							| 64 |  | cncfcdm |  |-  ( ( CC C_ CC /\ D e. ( ( A (,) B ) -cn-> RR ) ) -> ( D e. ( ( A (,) B ) -cn-> CC ) <-> D : ( A (,) B ) --> CC ) ) | 
						
							| 65 | 63 8 64 | syl2anc |  |-  ( ph -> ( D e. ( ( A (,) B ) -cn-> CC ) <-> D : ( A (,) B ) --> CC ) ) | 
						
							| 66 | 62 65 | mpbird |  |-  ( ph -> D e. ( ( A (,) B ) -cn-> CC ) ) | 
						
							| 67 | 6 | eleq1d |  |-  ( ph -> ( D e. ( ( A (,) B ) -cn-> CC ) <-> ( RR _D F ) e. ( ( A (,) B ) -cn-> CC ) ) ) | 
						
							| 68 | 66 67 | mpbid |  |-  ( ph -> ( RR _D F ) e. ( ( A (,) B ) -cn-> CC ) ) | 
						
							| 69 | 6 10 | eqeltrrd |  |-  ( ph -> ( RR _D F ) e. L^1 ) | 
						
							| 70 |  | fss |  |-  ( ( F : ( A [,] B ) --> RR /\ RR C_ CC ) -> F : ( A [,] B ) --> CC ) | 
						
							| 71 | 17 60 70 | syl2anc |  |-  ( ph -> F : ( A [,] B ) --> CC ) | 
						
							| 72 |  | cncfcdm |  |-  ( ( CC C_ CC /\ F e. ( ( A [,] B ) -cn-> RR ) ) -> ( F e. ( ( A [,] B ) -cn-> CC ) <-> F : ( A [,] B ) --> CC ) ) | 
						
							| 73 | 63 4 72 | syl2anc |  |-  ( ph -> ( F e. ( ( A [,] B ) -cn-> CC ) <-> F : ( A [,] B ) --> CC ) ) | 
						
							| 74 | 71 73 | mpbird |  |-  ( ph -> F e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 75 | 1 2 3 68 69 74 | ftc2 |  |-  ( ph -> S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t = ( ( F ` B ) - ( F ` A ) ) ) | 
						
							| 76 | 58 75 | eqtrd |  |-  ( ph -> S. ( A (,) B ) ( D ` t ) _d t = ( ( F ` B ) - ( F ` A ) ) ) | 
						
							| 77 | 55 76 | eqtrd |  |-  ( ph -> S. ( A (,) B ) ( ( x e. ( A (,) B ) |-> P ) ` t ) _d t = ( ( F ` B ) - ( F ` A ) ) ) | 
						
							| 78 | 51 77 | eqtrd |  |-  ( ph -> S. ( A (,) B ) P _d x = ( ( F ` B ) - ( F ` A ) ) ) | 
						
							| 79 | 49 | itgmpt |  |-  ( ph -> S. ( A (,) B ) Q _d x = S. ( A (,) B ) ( ( x e. ( A (,) B ) |-> Q ) ` t ) _d t ) | 
						
							| 80 | 13 | adantr |  |-  ( ( ph /\ t e. ( A (,) B ) ) -> E = ( x e. ( A (,) B ) |-> Q ) ) | 
						
							| 81 | 80 | eqcomd |  |-  ( ( ph /\ t e. ( A (,) B ) ) -> ( x e. ( A (,) B ) |-> Q ) = E ) | 
						
							| 82 | 81 | fveq1d |  |-  ( ( ph /\ t e. ( A (,) B ) ) -> ( ( x e. ( A (,) B ) |-> Q ) ` t ) = ( E ` t ) ) | 
						
							| 83 | 82 | itgeq2dv |  |-  ( ph -> S. ( A (,) B ) ( ( x e. ( A (,) B ) |-> Q ) ` t ) _d t = S. ( A (,) B ) ( E ` t ) _d t ) | 
						
							| 84 | 79 83 | eqtrd |  |-  ( ph -> S. ( A (,) B ) Q _d x = S. ( A (,) B ) ( E ` t ) _d t ) | 
						
							| 85 | 7 | adantr |  |-  ( ( ph /\ t e. ( A (,) B ) ) -> E = ( RR _D G ) ) | 
						
							| 86 | 85 | fveq1d |  |-  ( ( ph /\ t e. ( A (,) B ) ) -> ( E ` t ) = ( ( RR _D G ) ` t ) ) | 
						
							| 87 | 86 | itgeq2dv |  |-  ( ph -> S. ( A (,) B ) ( E ` t ) _d t = S. ( A (,) B ) ( ( RR _D G ) ` t ) _d t ) | 
						
							| 88 |  | fss |  |-  ( ( E : ( A (,) B ) --> RR /\ RR C_ CC ) -> E : ( A (,) B ) --> CC ) | 
						
							| 89 | 46 60 88 | syl2anc |  |-  ( ph -> E : ( A (,) B ) --> CC ) | 
						
							| 90 |  | cncfcdm |  |-  ( ( CC C_ CC /\ E e. ( ( A (,) B ) -cn-> RR ) ) -> ( E e. ( ( A (,) B ) -cn-> CC ) <-> E : ( A (,) B ) --> CC ) ) | 
						
							| 91 | 63 9 90 | syl2anc |  |-  ( ph -> ( E e. ( ( A (,) B ) -cn-> CC ) <-> E : ( A (,) B ) --> CC ) ) | 
						
							| 92 | 89 91 | mpbird |  |-  ( ph -> E e. ( ( A (,) B ) -cn-> CC ) ) | 
						
							| 93 | 7 | eleq1d |  |-  ( ph -> ( E e. ( ( A (,) B ) -cn-> CC ) <-> ( RR _D G ) e. ( ( A (,) B ) -cn-> CC ) ) ) | 
						
							| 94 | 92 93 | mpbid |  |-  ( ph -> ( RR _D G ) e. ( ( A (,) B ) -cn-> CC ) ) | 
						
							| 95 | 94 93 | mpbird |  |-  ( ph -> E e. ( ( A (,) B ) -cn-> CC ) ) | 
						
							| 96 | 95 93 | mpbid |  |-  ( ph -> ( RR _D G ) e. ( ( A (,) B ) -cn-> CC ) ) | 
						
							| 97 | 7 11 | eqeltrrd |  |-  ( ph -> ( RR _D G ) e. L^1 ) | 
						
							| 98 |  | fss |  |-  ( ( G : ( A [,] B ) --> RR /\ RR C_ CC ) -> G : ( A [,] B ) --> CC ) | 
						
							| 99 | 32 60 98 | syl2anc |  |-  ( ph -> G : ( A [,] B ) --> CC ) | 
						
							| 100 |  | cncfcdm |  |-  ( ( CC C_ CC /\ G e. ( ( A [,] B ) -cn-> RR ) ) -> ( G e. ( ( A [,] B ) -cn-> CC ) <-> G : ( A [,] B ) --> CC ) ) | 
						
							| 101 | 63 5 100 | syl2anc |  |-  ( ph -> ( G e. ( ( A [,] B ) -cn-> CC ) <-> G : ( A [,] B ) --> CC ) ) | 
						
							| 102 | 99 101 | mpbird |  |-  ( ph -> G e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 103 | 1 2 3 96 97 102 | ftc2 |  |-  ( ph -> S. ( A (,) B ) ( ( RR _D G ) ` t ) _d t = ( ( G ` B ) - ( G ` A ) ) ) | 
						
							| 104 | 87 103 | eqtrd |  |-  ( ph -> S. ( A (,) B ) ( E ` t ) _d t = ( ( G ` B ) - ( G ` A ) ) ) | 
						
							| 105 | 84 104 | eqtrd |  |-  ( ph -> S. ( A (,) B ) Q _d x = ( ( G ` B ) - ( G ` A ) ) ) | 
						
							| 106 | 78 105 | breq12d |  |-  ( ph -> ( S. ( A (,) B ) P _d x <_ S. ( A (,) B ) Q _d x <-> ( ( F ` B ) - ( F ` A ) ) <_ ( ( G ` B ) - ( G ` A ) ) ) ) | 
						
							| 107 | 50 106 | mpbid |  |-  ( ph -> ( ( F ` B ) - ( F ` A ) ) <_ ( ( G ` B ) - ( G ` A ) ) ) | 
						
							| 108 | 30 29 35 34 107 15 | le2addd |  |-  ( ph -> ( ( ( F ` B ) - ( F ` A ) ) + ( F ` A ) ) <_ ( ( ( G ` B ) - ( G ` A ) ) + ( G ` A ) ) ) | 
						
							| 109 | 59 23 | sselid |  |-  ( ph -> ( F ` B ) e. CC ) | 
						
							| 110 | 59 29 | sselid |  |-  ( ph -> ( F ` A ) e. CC ) | 
						
							| 111 | 109 110 | npcand |  |-  ( ph -> ( ( ( F ` B ) - ( F ` A ) ) + ( F ` A ) ) = ( F ` B ) ) | 
						
							| 112 | 59 33 | sselid |  |-  ( ph -> ( G ` B ) e. CC ) | 
						
							| 113 | 59 34 | sselid |  |-  ( ph -> ( G ` A ) e. CC ) | 
						
							| 114 | 112 113 | npcand |  |-  ( ph -> ( ( ( G ` B ) - ( G ` A ) ) + ( G ` A ) ) = ( G ` B ) ) | 
						
							| 115 | 111 114 | breq12d |  |-  ( ph -> ( ( ( ( F ` B ) - ( F ` A ) ) + ( F ` A ) ) <_ ( ( ( G ` B ) - ( G ` A ) ) + ( G ` A ) ) <-> ( F ` B ) <_ ( G ` B ) ) ) | 
						
							| 116 | 108 115 | mpbid |  |-  ( ph -> ( F ` B ) <_ ( G ` B ) ) |