| Step |
Hyp |
Ref |
Expression |
| 1 |
|
intlewftc.1 |
|- ( ph -> A e. RR ) |
| 2 |
|
intlewftc.2 |
|- ( ph -> B e. RR ) |
| 3 |
|
intlewftc.3 |
|- ( ph -> A <_ B ) |
| 4 |
|
intlewftc.4 |
|- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
| 5 |
|
intlewftc.5 |
|- ( ph -> G e. ( ( A [,] B ) -cn-> RR ) ) |
| 6 |
|
intlewftc.6 |
|- ( ph -> D = ( RR _D F ) ) |
| 7 |
|
intlewftc.7 |
|- ( ph -> E = ( RR _D G ) ) |
| 8 |
|
intlewftc.8 |
|- ( ph -> D e. ( ( A (,) B ) -cn-> RR ) ) |
| 9 |
|
intlewftc.9 |
|- ( ph -> E e. ( ( A (,) B ) -cn-> RR ) ) |
| 10 |
|
intlewftc.10 |
|- ( ph -> D e. L^1 ) |
| 11 |
|
intlewftc.11 |
|- ( ph -> E e. L^1 ) |
| 12 |
|
intlewftc.12 |
|- ( ph -> D = ( x e. ( A (,) B ) |-> P ) ) |
| 13 |
|
intlewftc.13 |
|- ( ph -> E = ( x e. ( A (,) B ) |-> Q ) ) |
| 14 |
|
intlewftc.14 |
|- ( ( ph /\ x e. ( A (,) B ) ) -> P <_ Q ) |
| 15 |
|
intlewftc.15 |
|- ( ph -> ( F ` A ) <_ ( G ` A ) ) |
| 16 |
|
cncff |
|- ( F e. ( ( A [,] B ) -cn-> RR ) -> F : ( A [,] B ) --> RR ) |
| 17 |
4 16
|
syl |
|- ( ph -> F : ( A [,] B ) --> RR ) |
| 18 |
2
|
leidd |
|- ( ph -> B <_ B ) |
| 19 |
2 3 18
|
3jca |
|- ( ph -> ( B e. RR /\ A <_ B /\ B <_ B ) ) |
| 20 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( B e. ( A [,] B ) <-> ( B e. RR /\ A <_ B /\ B <_ B ) ) ) |
| 21 |
1 2 20
|
syl2anc |
|- ( ph -> ( B e. ( A [,] B ) <-> ( B e. RR /\ A <_ B /\ B <_ B ) ) ) |
| 22 |
19 21
|
mpbird |
|- ( ph -> B e. ( A [,] B ) ) |
| 23 |
17 22
|
ffvelcdmd |
|- ( ph -> ( F ` B ) e. RR ) |
| 24 |
1
|
leidd |
|- ( ph -> A <_ A ) |
| 25 |
1 24 3
|
3jca |
|- ( ph -> ( A e. RR /\ A <_ A /\ A <_ B ) ) |
| 26 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( A e. ( A [,] B ) <-> ( A e. RR /\ A <_ A /\ A <_ B ) ) ) |
| 27 |
1 2 26
|
syl2anc |
|- ( ph -> ( A e. ( A [,] B ) <-> ( A e. RR /\ A <_ A /\ A <_ B ) ) ) |
| 28 |
25 27
|
mpbird |
|- ( ph -> A e. ( A [,] B ) ) |
| 29 |
17 28
|
ffvelcdmd |
|- ( ph -> ( F ` A ) e. RR ) |
| 30 |
23 29
|
resubcld |
|- ( ph -> ( ( F ` B ) - ( F ` A ) ) e. RR ) |
| 31 |
|
cncff |
|- ( G e. ( ( A [,] B ) -cn-> RR ) -> G : ( A [,] B ) --> RR ) |
| 32 |
5 31
|
syl |
|- ( ph -> G : ( A [,] B ) --> RR ) |
| 33 |
32 22
|
ffvelcdmd |
|- ( ph -> ( G ` B ) e. RR ) |
| 34 |
32 28
|
ffvelcdmd |
|- ( ph -> ( G ` A ) e. RR ) |
| 35 |
33 34
|
resubcld |
|- ( ph -> ( ( G ` B ) - ( G ` A ) ) e. RR ) |
| 36 |
12
|
eleq1d |
|- ( ph -> ( D e. L^1 <-> ( x e. ( A (,) B ) |-> P ) e. L^1 ) ) |
| 37 |
10 36
|
mpbid |
|- ( ph -> ( x e. ( A (,) B ) |-> P ) e. L^1 ) |
| 38 |
13
|
eleq1d |
|- ( ph -> ( E e. L^1 <-> ( x e. ( A (,) B ) |-> Q ) e. L^1 ) ) |
| 39 |
11 38
|
mpbid |
|- ( ph -> ( x e. ( A (,) B ) |-> Q ) e. L^1 ) |
| 40 |
|
cncff |
|- ( D e. ( ( A (,) B ) -cn-> RR ) -> D : ( A (,) B ) --> RR ) |
| 41 |
8 40
|
syl |
|- ( ph -> D : ( A (,) B ) --> RR ) |
| 42 |
12
|
feq1d |
|- ( ph -> ( D : ( A (,) B ) --> RR <-> ( x e. ( A (,) B ) |-> P ) : ( A (,) B ) --> RR ) ) |
| 43 |
41 42
|
mpbid |
|- ( ph -> ( x e. ( A (,) B ) |-> P ) : ( A (,) B ) --> RR ) |
| 44 |
43
|
fvmptelcdm |
|- ( ( ph /\ x e. ( A (,) B ) ) -> P e. RR ) |
| 45 |
|
cncff |
|- ( E e. ( ( A (,) B ) -cn-> RR ) -> E : ( A (,) B ) --> RR ) |
| 46 |
9 45
|
syl |
|- ( ph -> E : ( A (,) B ) --> RR ) |
| 47 |
13
|
feq1d |
|- ( ph -> ( E : ( A (,) B ) --> RR <-> ( x e. ( A (,) B ) |-> Q ) : ( A (,) B ) --> RR ) ) |
| 48 |
46 47
|
mpbid |
|- ( ph -> ( x e. ( A (,) B ) |-> Q ) : ( A (,) B ) --> RR ) |
| 49 |
48
|
fvmptelcdm |
|- ( ( ph /\ x e. ( A (,) B ) ) -> Q e. RR ) |
| 50 |
37 39 44 49 14
|
itgle |
|- ( ph -> S. ( A (,) B ) P _d x <_ S. ( A (,) B ) Q _d x ) |
| 51 |
44
|
itgmpt |
|- ( ph -> S. ( A (,) B ) P _d x = S. ( A (,) B ) ( ( x e. ( A (,) B ) |-> P ) ` t ) _d t ) |
| 52 |
12
|
fveq1d |
|- ( ph -> ( D ` t ) = ( ( x e. ( A (,) B ) |-> P ) ` t ) ) |
| 53 |
52
|
adantr |
|- ( ( ph /\ t e. ( A (,) B ) ) -> ( D ` t ) = ( ( x e. ( A (,) B ) |-> P ) ` t ) ) |
| 54 |
53
|
eqcomd |
|- ( ( ph /\ t e. ( A (,) B ) ) -> ( ( x e. ( A (,) B ) |-> P ) ` t ) = ( D ` t ) ) |
| 55 |
54
|
itgeq2dv |
|- ( ph -> S. ( A (,) B ) ( ( x e. ( A (,) B ) |-> P ) ` t ) _d t = S. ( A (,) B ) ( D ` t ) _d t ) |
| 56 |
6
|
adantr |
|- ( ( ph /\ t e. ( A (,) B ) ) -> D = ( RR _D F ) ) |
| 57 |
56
|
fveq1d |
|- ( ( ph /\ t e. ( A (,) B ) ) -> ( D ` t ) = ( ( RR _D F ) ` t ) ) |
| 58 |
57
|
itgeq2dv |
|- ( ph -> S. ( A (,) B ) ( D ` t ) _d t = S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t ) |
| 59 |
|
ax-resscn |
|- RR C_ CC |
| 60 |
59
|
a1i |
|- ( ph -> RR C_ CC ) |
| 61 |
|
fss |
|- ( ( D : ( A (,) B ) --> RR /\ RR C_ CC ) -> D : ( A (,) B ) --> CC ) |
| 62 |
41 60 61
|
syl2anc |
|- ( ph -> D : ( A (,) B ) --> CC ) |
| 63 |
|
ssidd |
|- ( ph -> CC C_ CC ) |
| 64 |
|
cncfcdm |
|- ( ( CC C_ CC /\ D e. ( ( A (,) B ) -cn-> RR ) ) -> ( D e. ( ( A (,) B ) -cn-> CC ) <-> D : ( A (,) B ) --> CC ) ) |
| 65 |
63 8 64
|
syl2anc |
|- ( ph -> ( D e. ( ( A (,) B ) -cn-> CC ) <-> D : ( A (,) B ) --> CC ) ) |
| 66 |
62 65
|
mpbird |
|- ( ph -> D e. ( ( A (,) B ) -cn-> CC ) ) |
| 67 |
6
|
eleq1d |
|- ( ph -> ( D e. ( ( A (,) B ) -cn-> CC ) <-> ( RR _D F ) e. ( ( A (,) B ) -cn-> CC ) ) ) |
| 68 |
66 67
|
mpbid |
|- ( ph -> ( RR _D F ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 69 |
6 10
|
eqeltrrd |
|- ( ph -> ( RR _D F ) e. L^1 ) |
| 70 |
|
fss |
|- ( ( F : ( A [,] B ) --> RR /\ RR C_ CC ) -> F : ( A [,] B ) --> CC ) |
| 71 |
17 60 70
|
syl2anc |
|- ( ph -> F : ( A [,] B ) --> CC ) |
| 72 |
|
cncfcdm |
|- ( ( CC C_ CC /\ F e. ( ( A [,] B ) -cn-> RR ) ) -> ( F e. ( ( A [,] B ) -cn-> CC ) <-> F : ( A [,] B ) --> CC ) ) |
| 73 |
63 4 72
|
syl2anc |
|- ( ph -> ( F e. ( ( A [,] B ) -cn-> CC ) <-> F : ( A [,] B ) --> CC ) ) |
| 74 |
71 73
|
mpbird |
|- ( ph -> F e. ( ( A [,] B ) -cn-> CC ) ) |
| 75 |
1 2 3 68 69 74
|
ftc2 |
|- ( ph -> S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t = ( ( F ` B ) - ( F ` A ) ) ) |
| 76 |
58 75
|
eqtrd |
|- ( ph -> S. ( A (,) B ) ( D ` t ) _d t = ( ( F ` B ) - ( F ` A ) ) ) |
| 77 |
55 76
|
eqtrd |
|- ( ph -> S. ( A (,) B ) ( ( x e. ( A (,) B ) |-> P ) ` t ) _d t = ( ( F ` B ) - ( F ` A ) ) ) |
| 78 |
51 77
|
eqtrd |
|- ( ph -> S. ( A (,) B ) P _d x = ( ( F ` B ) - ( F ` A ) ) ) |
| 79 |
49
|
itgmpt |
|- ( ph -> S. ( A (,) B ) Q _d x = S. ( A (,) B ) ( ( x e. ( A (,) B ) |-> Q ) ` t ) _d t ) |
| 80 |
13
|
adantr |
|- ( ( ph /\ t e. ( A (,) B ) ) -> E = ( x e. ( A (,) B ) |-> Q ) ) |
| 81 |
80
|
eqcomd |
|- ( ( ph /\ t e. ( A (,) B ) ) -> ( x e. ( A (,) B ) |-> Q ) = E ) |
| 82 |
81
|
fveq1d |
|- ( ( ph /\ t e. ( A (,) B ) ) -> ( ( x e. ( A (,) B ) |-> Q ) ` t ) = ( E ` t ) ) |
| 83 |
82
|
itgeq2dv |
|- ( ph -> S. ( A (,) B ) ( ( x e. ( A (,) B ) |-> Q ) ` t ) _d t = S. ( A (,) B ) ( E ` t ) _d t ) |
| 84 |
79 83
|
eqtrd |
|- ( ph -> S. ( A (,) B ) Q _d x = S. ( A (,) B ) ( E ` t ) _d t ) |
| 85 |
7
|
adantr |
|- ( ( ph /\ t e. ( A (,) B ) ) -> E = ( RR _D G ) ) |
| 86 |
85
|
fveq1d |
|- ( ( ph /\ t e. ( A (,) B ) ) -> ( E ` t ) = ( ( RR _D G ) ` t ) ) |
| 87 |
86
|
itgeq2dv |
|- ( ph -> S. ( A (,) B ) ( E ` t ) _d t = S. ( A (,) B ) ( ( RR _D G ) ` t ) _d t ) |
| 88 |
|
fss |
|- ( ( E : ( A (,) B ) --> RR /\ RR C_ CC ) -> E : ( A (,) B ) --> CC ) |
| 89 |
46 60 88
|
syl2anc |
|- ( ph -> E : ( A (,) B ) --> CC ) |
| 90 |
|
cncfcdm |
|- ( ( CC C_ CC /\ E e. ( ( A (,) B ) -cn-> RR ) ) -> ( E e. ( ( A (,) B ) -cn-> CC ) <-> E : ( A (,) B ) --> CC ) ) |
| 91 |
63 9 90
|
syl2anc |
|- ( ph -> ( E e. ( ( A (,) B ) -cn-> CC ) <-> E : ( A (,) B ) --> CC ) ) |
| 92 |
89 91
|
mpbird |
|- ( ph -> E e. ( ( A (,) B ) -cn-> CC ) ) |
| 93 |
7
|
eleq1d |
|- ( ph -> ( E e. ( ( A (,) B ) -cn-> CC ) <-> ( RR _D G ) e. ( ( A (,) B ) -cn-> CC ) ) ) |
| 94 |
92 93
|
mpbid |
|- ( ph -> ( RR _D G ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 95 |
94 93
|
mpbird |
|- ( ph -> E e. ( ( A (,) B ) -cn-> CC ) ) |
| 96 |
95 93
|
mpbid |
|- ( ph -> ( RR _D G ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 97 |
7 11
|
eqeltrrd |
|- ( ph -> ( RR _D G ) e. L^1 ) |
| 98 |
|
fss |
|- ( ( G : ( A [,] B ) --> RR /\ RR C_ CC ) -> G : ( A [,] B ) --> CC ) |
| 99 |
32 60 98
|
syl2anc |
|- ( ph -> G : ( A [,] B ) --> CC ) |
| 100 |
|
cncfcdm |
|- ( ( CC C_ CC /\ G e. ( ( A [,] B ) -cn-> RR ) ) -> ( G e. ( ( A [,] B ) -cn-> CC ) <-> G : ( A [,] B ) --> CC ) ) |
| 101 |
63 5 100
|
syl2anc |
|- ( ph -> ( G e. ( ( A [,] B ) -cn-> CC ) <-> G : ( A [,] B ) --> CC ) ) |
| 102 |
99 101
|
mpbird |
|- ( ph -> G e. ( ( A [,] B ) -cn-> CC ) ) |
| 103 |
1 2 3 96 97 102
|
ftc2 |
|- ( ph -> S. ( A (,) B ) ( ( RR _D G ) ` t ) _d t = ( ( G ` B ) - ( G ` A ) ) ) |
| 104 |
87 103
|
eqtrd |
|- ( ph -> S. ( A (,) B ) ( E ` t ) _d t = ( ( G ` B ) - ( G ` A ) ) ) |
| 105 |
84 104
|
eqtrd |
|- ( ph -> S. ( A (,) B ) Q _d x = ( ( G ` B ) - ( G ` A ) ) ) |
| 106 |
78 105
|
breq12d |
|- ( ph -> ( S. ( A (,) B ) P _d x <_ S. ( A (,) B ) Q _d x <-> ( ( F ` B ) - ( F ` A ) ) <_ ( ( G ` B ) - ( G ` A ) ) ) ) |
| 107 |
50 106
|
mpbid |
|- ( ph -> ( ( F ` B ) - ( F ` A ) ) <_ ( ( G ` B ) - ( G ` A ) ) ) |
| 108 |
30 29 35 34 107 15
|
le2addd |
|- ( ph -> ( ( ( F ` B ) - ( F ` A ) ) + ( F ` A ) ) <_ ( ( ( G ` B ) - ( G ` A ) ) + ( G ` A ) ) ) |
| 109 |
59 23
|
sselid |
|- ( ph -> ( F ` B ) e. CC ) |
| 110 |
59 29
|
sselid |
|- ( ph -> ( F ` A ) e. CC ) |
| 111 |
109 110
|
npcand |
|- ( ph -> ( ( ( F ` B ) - ( F ` A ) ) + ( F ` A ) ) = ( F ` B ) ) |
| 112 |
59 33
|
sselid |
|- ( ph -> ( G ` B ) e. CC ) |
| 113 |
59 34
|
sselid |
|- ( ph -> ( G ` A ) e. CC ) |
| 114 |
112 113
|
npcand |
|- ( ph -> ( ( ( G ` B ) - ( G ` A ) ) + ( G ` A ) ) = ( G ` B ) ) |
| 115 |
111 114
|
breq12d |
|- ( ph -> ( ( ( ( F ` B ) - ( F ` A ) ) + ( F ` A ) ) <_ ( ( ( G ` B ) - ( G ` A ) ) + ( G ` A ) ) <-> ( F ` B ) <_ ( G ` B ) ) ) |
| 116 |
108 115
|
mpbid |
|- ( ph -> ( F ` B ) <_ ( G ` B ) ) |