Step |
Hyp |
Ref |
Expression |
1 |
|
intlewftc.1 |
|- ( ph -> A e. RR ) |
2 |
|
intlewftc.2 |
|- ( ph -> B e. RR ) |
3 |
|
intlewftc.3 |
|- ( ph -> A <_ B ) |
4 |
|
intlewftc.4 |
|- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
5 |
|
intlewftc.5 |
|- ( ph -> G e. ( ( A [,] B ) -cn-> RR ) ) |
6 |
|
intlewftc.6 |
|- ( ph -> D = ( RR _D F ) ) |
7 |
|
intlewftc.7 |
|- ( ph -> E = ( RR _D G ) ) |
8 |
|
intlewftc.8 |
|- ( ph -> D e. ( ( A (,) B ) -cn-> RR ) ) |
9 |
|
intlewftc.9 |
|- ( ph -> E e. ( ( A (,) B ) -cn-> RR ) ) |
10 |
|
intlewftc.10 |
|- ( ph -> D e. L^1 ) |
11 |
|
intlewftc.11 |
|- ( ph -> E e. L^1 ) |
12 |
|
intlewftc.12 |
|- ( ph -> D = ( x e. ( A (,) B ) |-> P ) ) |
13 |
|
intlewftc.13 |
|- ( ph -> E = ( x e. ( A (,) B ) |-> Q ) ) |
14 |
|
intlewftc.14 |
|- ( ( ph /\ x e. ( A (,) B ) ) -> P <_ Q ) |
15 |
|
intlewftc.15 |
|- ( ph -> ( F ` A ) <_ ( G ` A ) ) |
16 |
|
cncff |
|- ( F e. ( ( A [,] B ) -cn-> RR ) -> F : ( A [,] B ) --> RR ) |
17 |
4 16
|
syl |
|- ( ph -> F : ( A [,] B ) --> RR ) |
18 |
2
|
leidd |
|- ( ph -> B <_ B ) |
19 |
2 3 18
|
3jca |
|- ( ph -> ( B e. RR /\ A <_ B /\ B <_ B ) ) |
20 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( B e. ( A [,] B ) <-> ( B e. RR /\ A <_ B /\ B <_ B ) ) ) |
21 |
1 2 20
|
syl2anc |
|- ( ph -> ( B e. ( A [,] B ) <-> ( B e. RR /\ A <_ B /\ B <_ B ) ) ) |
22 |
19 21
|
mpbird |
|- ( ph -> B e. ( A [,] B ) ) |
23 |
17 22
|
ffvelrnd |
|- ( ph -> ( F ` B ) e. RR ) |
24 |
1
|
leidd |
|- ( ph -> A <_ A ) |
25 |
1 24 3
|
3jca |
|- ( ph -> ( A e. RR /\ A <_ A /\ A <_ B ) ) |
26 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( A e. ( A [,] B ) <-> ( A e. RR /\ A <_ A /\ A <_ B ) ) ) |
27 |
1 2 26
|
syl2anc |
|- ( ph -> ( A e. ( A [,] B ) <-> ( A e. RR /\ A <_ A /\ A <_ B ) ) ) |
28 |
25 27
|
mpbird |
|- ( ph -> A e. ( A [,] B ) ) |
29 |
17 28
|
ffvelrnd |
|- ( ph -> ( F ` A ) e. RR ) |
30 |
23 29
|
resubcld |
|- ( ph -> ( ( F ` B ) - ( F ` A ) ) e. RR ) |
31 |
|
cncff |
|- ( G e. ( ( A [,] B ) -cn-> RR ) -> G : ( A [,] B ) --> RR ) |
32 |
5 31
|
syl |
|- ( ph -> G : ( A [,] B ) --> RR ) |
33 |
32 22
|
ffvelrnd |
|- ( ph -> ( G ` B ) e. RR ) |
34 |
32 28
|
ffvelrnd |
|- ( ph -> ( G ` A ) e. RR ) |
35 |
33 34
|
resubcld |
|- ( ph -> ( ( G ` B ) - ( G ` A ) ) e. RR ) |
36 |
12
|
eleq1d |
|- ( ph -> ( D e. L^1 <-> ( x e. ( A (,) B ) |-> P ) e. L^1 ) ) |
37 |
10 36
|
mpbid |
|- ( ph -> ( x e. ( A (,) B ) |-> P ) e. L^1 ) |
38 |
13
|
eleq1d |
|- ( ph -> ( E e. L^1 <-> ( x e. ( A (,) B ) |-> Q ) e. L^1 ) ) |
39 |
11 38
|
mpbid |
|- ( ph -> ( x e. ( A (,) B ) |-> Q ) e. L^1 ) |
40 |
|
cncff |
|- ( D e. ( ( A (,) B ) -cn-> RR ) -> D : ( A (,) B ) --> RR ) |
41 |
8 40
|
syl |
|- ( ph -> D : ( A (,) B ) --> RR ) |
42 |
12
|
feq1d |
|- ( ph -> ( D : ( A (,) B ) --> RR <-> ( x e. ( A (,) B ) |-> P ) : ( A (,) B ) --> RR ) ) |
43 |
41 42
|
mpbid |
|- ( ph -> ( x e. ( A (,) B ) |-> P ) : ( A (,) B ) --> RR ) |
44 |
43
|
fvmptelrn |
|- ( ( ph /\ x e. ( A (,) B ) ) -> P e. RR ) |
45 |
|
cncff |
|- ( E e. ( ( A (,) B ) -cn-> RR ) -> E : ( A (,) B ) --> RR ) |
46 |
9 45
|
syl |
|- ( ph -> E : ( A (,) B ) --> RR ) |
47 |
13
|
feq1d |
|- ( ph -> ( E : ( A (,) B ) --> RR <-> ( x e. ( A (,) B ) |-> Q ) : ( A (,) B ) --> RR ) ) |
48 |
46 47
|
mpbid |
|- ( ph -> ( x e. ( A (,) B ) |-> Q ) : ( A (,) B ) --> RR ) |
49 |
48
|
fvmptelrn |
|- ( ( ph /\ x e. ( A (,) B ) ) -> Q e. RR ) |
50 |
37 39 44 49 14
|
itgle |
|- ( ph -> S. ( A (,) B ) P _d x <_ S. ( A (,) B ) Q _d x ) |
51 |
44
|
itgmpt |
|- ( ph -> S. ( A (,) B ) P _d x = S. ( A (,) B ) ( ( x e. ( A (,) B ) |-> P ) ` t ) _d t ) |
52 |
12
|
fveq1d |
|- ( ph -> ( D ` t ) = ( ( x e. ( A (,) B ) |-> P ) ` t ) ) |
53 |
52
|
adantr |
|- ( ( ph /\ t e. ( A (,) B ) ) -> ( D ` t ) = ( ( x e. ( A (,) B ) |-> P ) ` t ) ) |
54 |
53
|
eqcomd |
|- ( ( ph /\ t e. ( A (,) B ) ) -> ( ( x e. ( A (,) B ) |-> P ) ` t ) = ( D ` t ) ) |
55 |
54
|
itgeq2dv |
|- ( ph -> S. ( A (,) B ) ( ( x e. ( A (,) B ) |-> P ) ` t ) _d t = S. ( A (,) B ) ( D ` t ) _d t ) |
56 |
6
|
adantr |
|- ( ( ph /\ t e. ( A (,) B ) ) -> D = ( RR _D F ) ) |
57 |
56
|
fveq1d |
|- ( ( ph /\ t e. ( A (,) B ) ) -> ( D ` t ) = ( ( RR _D F ) ` t ) ) |
58 |
57
|
itgeq2dv |
|- ( ph -> S. ( A (,) B ) ( D ` t ) _d t = S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t ) |
59 |
|
ax-resscn |
|- RR C_ CC |
60 |
59
|
a1i |
|- ( ph -> RR C_ CC ) |
61 |
|
fss |
|- ( ( D : ( A (,) B ) --> RR /\ RR C_ CC ) -> D : ( A (,) B ) --> CC ) |
62 |
41 60 61
|
syl2anc |
|- ( ph -> D : ( A (,) B ) --> CC ) |
63 |
|
ssidd |
|- ( ph -> CC C_ CC ) |
64 |
|
cncffvrn |
|- ( ( CC C_ CC /\ D e. ( ( A (,) B ) -cn-> RR ) ) -> ( D e. ( ( A (,) B ) -cn-> CC ) <-> D : ( A (,) B ) --> CC ) ) |
65 |
63 8 64
|
syl2anc |
|- ( ph -> ( D e. ( ( A (,) B ) -cn-> CC ) <-> D : ( A (,) B ) --> CC ) ) |
66 |
62 65
|
mpbird |
|- ( ph -> D e. ( ( A (,) B ) -cn-> CC ) ) |
67 |
6
|
eleq1d |
|- ( ph -> ( D e. ( ( A (,) B ) -cn-> CC ) <-> ( RR _D F ) e. ( ( A (,) B ) -cn-> CC ) ) ) |
68 |
66 67
|
mpbid |
|- ( ph -> ( RR _D F ) e. ( ( A (,) B ) -cn-> CC ) ) |
69 |
6 10
|
eqeltrrd |
|- ( ph -> ( RR _D F ) e. L^1 ) |
70 |
|
fss |
|- ( ( F : ( A [,] B ) --> RR /\ RR C_ CC ) -> F : ( A [,] B ) --> CC ) |
71 |
17 60 70
|
syl2anc |
|- ( ph -> F : ( A [,] B ) --> CC ) |
72 |
|
cncffvrn |
|- ( ( CC C_ CC /\ F e. ( ( A [,] B ) -cn-> RR ) ) -> ( F e. ( ( A [,] B ) -cn-> CC ) <-> F : ( A [,] B ) --> CC ) ) |
73 |
63 4 72
|
syl2anc |
|- ( ph -> ( F e. ( ( A [,] B ) -cn-> CC ) <-> F : ( A [,] B ) --> CC ) ) |
74 |
71 73
|
mpbird |
|- ( ph -> F e. ( ( A [,] B ) -cn-> CC ) ) |
75 |
1 2 3 68 69 74
|
ftc2 |
|- ( ph -> S. ( A (,) B ) ( ( RR _D F ) ` t ) _d t = ( ( F ` B ) - ( F ` A ) ) ) |
76 |
58 75
|
eqtrd |
|- ( ph -> S. ( A (,) B ) ( D ` t ) _d t = ( ( F ` B ) - ( F ` A ) ) ) |
77 |
55 76
|
eqtrd |
|- ( ph -> S. ( A (,) B ) ( ( x e. ( A (,) B ) |-> P ) ` t ) _d t = ( ( F ` B ) - ( F ` A ) ) ) |
78 |
51 77
|
eqtrd |
|- ( ph -> S. ( A (,) B ) P _d x = ( ( F ` B ) - ( F ` A ) ) ) |
79 |
49
|
itgmpt |
|- ( ph -> S. ( A (,) B ) Q _d x = S. ( A (,) B ) ( ( x e. ( A (,) B ) |-> Q ) ` t ) _d t ) |
80 |
13
|
adantr |
|- ( ( ph /\ t e. ( A (,) B ) ) -> E = ( x e. ( A (,) B ) |-> Q ) ) |
81 |
80
|
eqcomd |
|- ( ( ph /\ t e. ( A (,) B ) ) -> ( x e. ( A (,) B ) |-> Q ) = E ) |
82 |
81
|
fveq1d |
|- ( ( ph /\ t e. ( A (,) B ) ) -> ( ( x e. ( A (,) B ) |-> Q ) ` t ) = ( E ` t ) ) |
83 |
82
|
itgeq2dv |
|- ( ph -> S. ( A (,) B ) ( ( x e. ( A (,) B ) |-> Q ) ` t ) _d t = S. ( A (,) B ) ( E ` t ) _d t ) |
84 |
79 83
|
eqtrd |
|- ( ph -> S. ( A (,) B ) Q _d x = S. ( A (,) B ) ( E ` t ) _d t ) |
85 |
7
|
adantr |
|- ( ( ph /\ t e. ( A (,) B ) ) -> E = ( RR _D G ) ) |
86 |
85
|
fveq1d |
|- ( ( ph /\ t e. ( A (,) B ) ) -> ( E ` t ) = ( ( RR _D G ) ` t ) ) |
87 |
86
|
itgeq2dv |
|- ( ph -> S. ( A (,) B ) ( E ` t ) _d t = S. ( A (,) B ) ( ( RR _D G ) ` t ) _d t ) |
88 |
|
fss |
|- ( ( E : ( A (,) B ) --> RR /\ RR C_ CC ) -> E : ( A (,) B ) --> CC ) |
89 |
46 60 88
|
syl2anc |
|- ( ph -> E : ( A (,) B ) --> CC ) |
90 |
|
cncffvrn |
|- ( ( CC C_ CC /\ E e. ( ( A (,) B ) -cn-> RR ) ) -> ( E e. ( ( A (,) B ) -cn-> CC ) <-> E : ( A (,) B ) --> CC ) ) |
91 |
63 9 90
|
syl2anc |
|- ( ph -> ( E e. ( ( A (,) B ) -cn-> CC ) <-> E : ( A (,) B ) --> CC ) ) |
92 |
89 91
|
mpbird |
|- ( ph -> E e. ( ( A (,) B ) -cn-> CC ) ) |
93 |
7
|
eleq1d |
|- ( ph -> ( E e. ( ( A (,) B ) -cn-> CC ) <-> ( RR _D G ) e. ( ( A (,) B ) -cn-> CC ) ) ) |
94 |
92 93
|
mpbid |
|- ( ph -> ( RR _D G ) e. ( ( A (,) B ) -cn-> CC ) ) |
95 |
94 93
|
mpbird |
|- ( ph -> E e. ( ( A (,) B ) -cn-> CC ) ) |
96 |
95 93
|
mpbid |
|- ( ph -> ( RR _D G ) e. ( ( A (,) B ) -cn-> CC ) ) |
97 |
7 11
|
eqeltrrd |
|- ( ph -> ( RR _D G ) e. L^1 ) |
98 |
|
fss |
|- ( ( G : ( A [,] B ) --> RR /\ RR C_ CC ) -> G : ( A [,] B ) --> CC ) |
99 |
32 60 98
|
syl2anc |
|- ( ph -> G : ( A [,] B ) --> CC ) |
100 |
|
cncffvrn |
|- ( ( CC C_ CC /\ G e. ( ( A [,] B ) -cn-> RR ) ) -> ( G e. ( ( A [,] B ) -cn-> CC ) <-> G : ( A [,] B ) --> CC ) ) |
101 |
63 5 100
|
syl2anc |
|- ( ph -> ( G e. ( ( A [,] B ) -cn-> CC ) <-> G : ( A [,] B ) --> CC ) ) |
102 |
99 101
|
mpbird |
|- ( ph -> G e. ( ( A [,] B ) -cn-> CC ) ) |
103 |
1 2 3 96 97 102
|
ftc2 |
|- ( ph -> S. ( A (,) B ) ( ( RR _D G ) ` t ) _d t = ( ( G ` B ) - ( G ` A ) ) ) |
104 |
87 103
|
eqtrd |
|- ( ph -> S. ( A (,) B ) ( E ` t ) _d t = ( ( G ` B ) - ( G ` A ) ) ) |
105 |
84 104
|
eqtrd |
|- ( ph -> S. ( A (,) B ) Q _d x = ( ( G ` B ) - ( G ` A ) ) ) |
106 |
78 105
|
breq12d |
|- ( ph -> ( S. ( A (,) B ) P _d x <_ S. ( A (,) B ) Q _d x <-> ( ( F ` B ) - ( F ` A ) ) <_ ( ( G ` B ) - ( G ` A ) ) ) ) |
107 |
50 106
|
mpbid |
|- ( ph -> ( ( F ` B ) - ( F ` A ) ) <_ ( ( G ` B ) - ( G ` A ) ) ) |
108 |
30 29 35 34 107 15
|
le2addd |
|- ( ph -> ( ( ( F ` B ) - ( F ` A ) ) + ( F ` A ) ) <_ ( ( ( G ` B ) - ( G ` A ) ) + ( G ` A ) ) ) |
109 |
59 23
|
sselid |
|- ( ph -> ( F ` B ) e. CC ) |
110 |
59 29
|
sselid |
|- ( ph -> ( F ` A ) e. CC ) |
111 |
109 110
|
npcand |
|- ( ph -> ( ( ( F ` B ) - ( F ` A ) ) + ( F ` A ) ) = ( F ` B ) ) |
112 |
59 33
|
sselid |
|- ( ph -> ( G ` B ) e. CC ) |
113 |
59 34
|
sselid |
|- ( ph -> ( G ` A ) e. CC ) |
114 |
112 113
|
npcand |
|- ( ph -> ( ( ( G ` B ) - ( G ` A ) ) + ( G ` A ) ) = ( G ` B ) ) |
115 |
111 114
|
breq12d |
|- ( ph -> ( ( ( ( F ` B ) - ( F ` A ) ) + ( F ` A ) ) <_ ( ( ( G ` B ) - ( G ` A ) ) + ( G ` A ) ) <-> ( F ` B ) <_ ( G ` B ) ) ) |
116 |
108 115
|
mpbid |
|- ( ph -> ( F ` B ) <_ ( G ` B ) ) |