| Step | Hyp | Ref | Expression | 
						
							| 1 |  | intlewftc.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | intlewftc.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | intlewftc.3 | ⊢ ( 𝜑  →  𝐴  ≤  𝐵 ) | 
						
							| 4 |  | intlewftc.4 | ⊢ ( 𝜑  →  𝐹  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | 
						
							| 5 |  | intlewftc.5 | ⊢ ( 𝜑  →  𝐺  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | 
						
							| 6 |  | intlewftc.6 | ⊢ ( 𝜑  →  𝐷  =  ( ℝ  D  𝐹 ) ) | 
						
							| 7 |  | intlewftc.7 | ⊢ ( 𝜑  →  𝐸  =  ( ℝ  D  𝐺 ) ) | 
						
							| 8 |  | intlewftc.8 | ⊢ ( 𝜑  →  𝐷  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) | 
						
							| 9 |  | intlewftc.9 | ⊢ ( 𝜑  →  𝐸  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) | 
						
							| 10 |  | intlewftc.10 | ⊢ ( 𝜑  →  𝐷  ∈  𝐿1 ) | 
						
							| 11 |  | intlewftc.11 | ⊢ ( 𝜑  →  𝐸  ∈  𝐿1 ) | 
						
							| 12 |  | intlewftc.12 | ⊢ ( 𝜑  →  𝐷  =  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  𝑃 ) ) | 
						
							| 13 |  | intlewftc.13 | ⊢ ( 𝜑  →  𝐸  =  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  𝑄 ) ) | 
						
							| 14 |  | intlewftc.14 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  𝑃  ≤  𝑄 ) | 
						
							| 15 |  | intlewftc.15 | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  ≤  ( 𝐺 ‘ 𝐴 ) ) | 
						
							| 16 |  | cncff | ⊢ ( 𝐹  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ )  →  𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | 
						
							| 17 | 4 16 | syl | ⊢ ( 𝜑  →  𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | 
						
							| 18 | 2 | leidd | ⊢ ( 𝜑  →  𝐵  ≤  𝐵 ) | 
						
							| 19 | 2 3 18 | 3jca | ⊢ ( 𝜑  →  ( 𝐵  ∈  ℝ  ∧  𝐴  ≤  𝐵  ∧  𝐵  ≤  𝐵 ) ) | 
						
							| 20 |  | elicc2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐵  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝐵  ∈  ℝ  ∧  𝐴  ≤  𝐵  ∧  𝐵  ≤  𝐵 ) ) ) | 
						
							| 21 | 1 2 20 | syl2anc | ⊢ ( 𝜑  →  ( 𝐵  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝐵  ∈  ℝ  ∧  𝐴  ≤  𝐵  ∧  𝐵  ≤  𝐵 ) ) ) | 
						
							| 22 | 19 21 | mpbird | ⊢ ( 𝜑  →  𝐵  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 23 | 17 22 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 24 | 1 | leidd | ⊢ ( 𝜑  →  𝐴  ≤  𝐴 ) | 
						
							| 25 | 1 24 3 | 3jca | ⊢ ( 𝜑  →  ( 𝐴  ∈  ℝ  ∧  𝐴  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) ) | 
						
							| 26 |  | elicc2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝐴  ∈  ℝ  ∧  𝐴  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) ) ) | 
						
							| 27 | 1 2 26 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝐴  ∈  ℝ  ∧  𝐴  ≤  𝐴  ∧  𝐴  ≤  𝐵 ) ) ) | 
						
							| 28 | 25 27 | mpbird | ⊢ ( 𝜑  →  𝐴  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 29 | 17 28 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 30 | 23 29 | resubcld | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐵 )  −  ( 𝐹 ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 31 |  | cncff | ⊢ ( 𝐺  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ )  →  𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | 
						
							| 32 | 5 31 | syl | ⊢ ( 𝜑  →  𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | 
						
							| 33 | 32 22 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 34 | 32 28 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 35 | 33 34 | resubcld | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝐵 )  −  ( 𝐺 ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 36 | 12 | eleq1d | ⊢ ( 𝜑  →  ( 𝐷  ∈  𝐿1  ↔  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  𝑃 )  ∈  𝐿1 ) ) | 
						
							| 37 | 10 36 | mpbid | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  𝑃 )  ∈  𝐿1 ) | 
						
							| 38 | 13 | eleq1d | ⊢ ( 𝜑  →  ( 𝐸  ∈  𝐿1  ↔  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  𝑄 )  ∈  𝐿1 ) ) | 
						
							| 39 | 11 38 | mpbid | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  𝑄 )  ∈  𝐿1 ) | 
						
							| 40 |  | cncff | ⊢ ( 𝐷  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ )  →  𝐷 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) | 
						
							| 41 | 8 40 | syl | ⊢ ( 𝜑  →  𝐷 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) | 
						
							| 42 | 12 | feq1d | ⊢ ( 𝜑  →  ( 𝐷 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ  ↔  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  𝑃 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) ) | 
						
							| 43 | 41 42 | mpbid | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  𝑃 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) | 
						
							| 44 | 43 | fvmptelcdm | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  𝑃  ∈  ℝ ) | 
						
							| 45 |  | cncff | ⊢ ( 𝐸  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ )  →  𝐸 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) | 
						
							| 46 | 9 45 | syl | ⊢ ( 𝜑  →  𝐸 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) | 
						
							| 47 | 13 | feq1d | ⊢ ( 𝜑  →  ( 𝐸 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ  ↔  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  𝑄 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) ) | 
						
							| 48 | 46 47 | mpbid | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  𝑄 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) | 
						
							| 49 | 48 | fvmptelcdm | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  𝑄  ∈  ℝ ) | 
						
							| 50 | 37 39 44 49 14 | itgle | ⊢ ( 𝜑  →  ∫ ( 𝐴 (,) 𝐵 ) 𝑃  d 𝑥  ≤  ∫ ( 𝐴 (,) 𝐵 ) 𝑄  d 𝑥 ) | 
						
							| 51 | 44 | itgmpt | ⊢ ( 𝜑  →  ∫ ( 𝐴 (,) 𝐵 ) 𝑃  d 𝑥  =  ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  𝑃 ) ‘ 𝑡 )  d 𝑡 ) | 
						
							| 52 | 12 | fveq1d | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝑡 )  =  ( ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  𝑃 ) ‘ 𝑡 ) ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( 𝐷 ‘ 𝑡 )  =  ( ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  𝑃 ) ‘ 𝑡 ) ) | 
						
							| 54 | 53 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  𝑃 ) ‘ 𝑡 )  =  ( 𝐷 ‘ 𝑡 ) ) | 
						
							| 55 | 54 | itgeq2dv | ⊢ ( 𝜑  →  ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  𝑃 ) ‘ 𝑡 )  d 𝑡  =  ∫ ( 𝐴 (,) 𝐵 ) ( 𝐷 ‘ 𝑡 )  d 𝑡 ) | 
						
							| 56 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝐴 (,) 𝐵 ) )  →  𝐷  =  ( ℝ  D  𝐹 ) ) | 
						
							| 57 | 56 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( 𝐷 ‘ 𝑡 )  =  ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) ) | 
						
							| 58 | 57 | itgeq2dv | ⊢ ( 𝜑  →  ∫ ( 𝐴 (,) 𝐵 ) ( 𝐷 ‘ 𝑡 )  d 𝑡  =  ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡 ) | 
						
							| 59 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 60 | 59 | a1i | ⊢ ( 𝜑  →  ℝ  ⊆  ℂ ) | 
						
							| 61 |  | fss | ⊢ ( ( 𝐷 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ  ∧  ℝ  ⊆  ℂ )  →  𝐷 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) | 
						
							| 62 | 41 60 61 | syl2anc | ⊢ ( 𝜑  →  𝐷 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) | 
						
							| 63 |  | ssidd | ⊢ ( 𝜑  →  ℂ  ⊆  ℂ ) | 
						
							| 64 |  | cncfcdm | ⊢ ( ( ℂ  ⊆  ℂ  ∧  𝐷  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) )  →  ( 𝐷  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ )  ↔  𝐷 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) ) | 
						
							| 65 | 63 8 64 | syl2anc | ⊢ ( 𝜑  →  ( 𝐷  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ )  ↔  𝐷 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) ) | 
						
							| 66 | 62 65 | mpbird | ⊢ ( 𝜑  →  𝐷  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) | 
						
							| 67 | 6 | eleq1d | ⊢ ( 𝜑  →  ( 𝐷  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ )  ↔  ( ℝ  D  𝐹 )  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) ) | 
						
							| 68 | 66 67 | mpbid | ⊢ ( 𝜑  →  ( ℝ  D  𝐹 )  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) | 
						
							| 69 | 6 10 | eqeltrrd | ⊢ ( 𝜑  →  ( ℝ  D  𝐹 )  ∈  𝐿1 ) | 
						
							| 70 |  | fss | ⊢ ( ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ  ∧  ℝ  ⊆  ℂ )  →  𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) | 
						
							| 71 | 17 60 70 | syl2anc | ⊢ ( 𝜑  →  𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) | 
						
							| 72 |  | cncfcdm | ⊢ ( ( ℂ  ⊆  ℂ  ∧  𝐹  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) )  →  ( 𝐹  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ )  ↔  𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) ) | 
						
							| 73 | 63 4 72 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ )  ↔  𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) ) | 
						
							| 74 | 71 73 | mpbird | ⊢ ( 𝜑  →  𝐹  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | 
						
							| 75 | 1 2 3 68 69 74 | ftc2 | ⊢ ( 𝜑  →  ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐹 ) ‘ 𝑡 )  d 𝑡  =  ( ( 𝐹 ‘ 𝐵 )  −  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 76 | 58 75 | eqtrd | ⊢ ( 𝜑  →  ∫ ( 𝐴 (,) 𝐵 ) ( 𝐷 ‘ 𝑡 )  d 𝑡  =  ( ( 𝐹 ‘ 𝐵 )  −  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 77 | 55 76 | eqtrd | ⊢ ( 𝜑  →  ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  𝑃 ) ‘ 𝑡 )  d 𝑡  =  ( ( 𝐹 ‘ 𝐵 )  −  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 78 | 51 77 | eqtrd | ⊢ ( 𝜑  →  ∫ ( 𝐴 (,) 𝐵 ) 𝑃  d 𝑥  =  ( ( 𝐹 ‘ 𝐵 )  −  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 79 | 49 | itgmpt | ⊢ ( 𝜑  →  ∫ ( 𝐴 (,) 𝐵 ) 𝑄  d 𝑥  =  ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  𝑄 ) ‘ 𝑡 )  d 𝑡 ) | 
						
							| 80 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝐴 (,) 𝐵 ) )  →  𝐸  =  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  𝑄 ) ) | 
						
							| 81 | 80 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  𝑄 )  =  𝐸 ) | 
						
							| 82 | 81 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  𝑄 ) ‘ 𝑡 )  =  ( 𝐸 ‘ 𝑡 ) ) | 
						
							| 83 | 82 | itgeq2dv | ⊢ ( 𝜑  →  ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  𝑄 ) ‘ 𝑡 )  d 𝑡  =  ∫ ( 𝐴 (,) 𝐵 ) ( 𝐸 ‘ 𝑡 )  d 𝑡 ) | 
						
							| 84 | 79 83 | eqtrd | ⊢ ( 𝜑  →  ∫ ( 𝐴 (,) 𝐵 ) 𝑄  d 𝑥  =  ∫ ( 𝐴 (,) 𝐵 ) ( 𝐸 ‘ 𝑡 )  d 𝑡 ) | 
						
							| 85 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝐴 (,) 𝐵 ) )  →  𝐸  =  ( ℝ  D  𝐺 ) ) | 
						
							| 86 | 85 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( 𝐸 ‘ 𝑡 )  =  ( ( ℝ  D  𝐺 ) ‘ 𝑡 ) ) | 
						
							| 87 | 86 | itgeq2dv | ⊢ ( 𝜑  →  ∫ ( 𝐴 (,) 𝐵 ) ( 𝐸 ‘ 𝑡 )  d 𝑡  =  ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐺 ) ‘ 𝑡 )  d 𝑡 ) | 
						
							| 88 |  | fss | ⊢ ( ( 𝐸 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ  ∧  ℝ  ⊆  ℂ )  →  𝐸 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) | 
						
							| 89 | 46 60 88 | syl2anc | ⊢ ( 𝜑  →  𝐸 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) | 
						
							| 90 |  | cncfcdm | ⊢ ( ( ℂ  ⊆  ℂ  ∧  𝐸  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) )  →  ( 𝐸  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ )  ↔  𝐸 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) ) | 
						
							| 91 | 63 9 90 | syl2anc | ⊢ ( 𝜑  →  ( 𝐸  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ )  ↔  𝐸 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) ) | 
						
							| 92 | 89 91 | mpbird | ⊢ ( 𝜑  →  𝐸  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) | 
						
							| 93 | 7 | eleq1d | ⊢ ( 𝜑  →  ( 𝐸  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ )  ↔  ( ℝ  D  𝐺 )  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) ) | 
						
							| 94 | 92 93 | mpbid | ⊢ ( 𝜑  →  ( ℝ  D  𝐺 )  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) | 
						
							| 95 | 94 93 | mpbird | ⊢ ( 𝜑  →  𝐸  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) | 
						
							| 96 | 95 93 | mpbid | ⊢ ( 𝜑  →  ( ℝ  D  𝐺 )  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) | 
						
							| 97 | 7 11 | eqeltrrd | ⊢ ( 𝜑  →  ( ℝ  D  𝐺 )  ∈  𝐿1 ) | 
						
							| 98 |  | fss | ⊢ ( ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ  ∧  ℝ  ⊆  ℂ )  →  𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) | 
						
							| 99 | 32 60 98 | syl2anc | ⊢ ( 𝜑  →  𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) | 
						
							| 100 |  | cncfcdm | ⊢ ( ( ℂ  ⊆  ℂ  ∧  𝐺  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) )  →  ( 𝐺  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ )  ↔  𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) ) | 
						
							| 101 | 63 5 100 | syl2anc | ⊢ ( 𝜑  →  ( 𝐺  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ )  ↔  𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) ) | 
						
							| 102 | 99 101 | mpbird | ⊢ ( 𝜑  →  𝐺  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | 
						
							| 103 | 1 2 3 96 97 102 | ftc2 | ⊢ ( 𝜑  →  ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ  D  𝐺 ) ‘ 𝑡 )  d 𝑡  =  ( ( 𝐺 ‘ 𝐵 )  −  ( 𝐺 ‘ 𝐴 ) ) ) | 
						
							| 104 | 87 103 | eqtrd | ⊢ ( 𝜑  →  ∫ ( 𝐴 (,) 𝐵 ) ( 𝐸 ‘ 𝑡 )  d 𝑡  =  ( ( 𝐺 ‘ 𝐵 )  −  ( 𝐺 ‘ 𝐴 ) ) ) | 
						
							| 105 | 84 104 | eqtrd | ⊢ ( 𝜑  →  ∫ ( 𝐴 (,) 𝐵 ) 𝑄  d 𝑥  =  ( ( 𝐺 ‘ 𝐵 )  −  ( 𝐺 ‘ 𝐴 ) ) ) | 
						
							| 106 | 78 105 | breq12d | ⊢ ( 𝜑  →  ( ∫ ( 𝐴 (,) 𝐵 ) 𝑃  d 𝑥  ≤  ∫ ( 𝐴 (,) 𝐵 ) 𝑄  d 𝑥  ↔  ( ( 𝐹 ‘ 𝐵 )  −  ( 𝐹 ‘ 𝐴 ) )  ≤  ( ( 𝐺 ‘ 𝐵 )  −  ( 𝐺 ‘ 𝐴 ) ) ) ) | 
						
							| 107 | 50 106 | mpbid | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐵 )  −  ( 𝐹 ‘ 𝐴 ) )  ≤  ( ( 𝐺 ‘ 𝐵 )  −  ( 𝐺 ‘ 𝐴 ) ) ) | 
						
							| 108 | 30 29 35 34 107 15 | le2addd | ⊢ ( 𝜑  →  ( ( ( 𝐹 ‘ 𝐵 )  −  ( 𝐹 ‘ 𝐴 ) )  +  ( 𝐹 ‘ 𝐴 ) )  ≤  ( ( ( 𝐺 ‘ 𝐵 )  −  ( 𝐺 ‘ 𝐴 ) )  +  ( 𝐺 ‘ 𝐴 ) ) ) | 
						
							| 109 | 59 23 | sselid | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 110 | 59 29 | sselid | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 111 | 109 110 | npcand | ⊢ ( 𝜑  →  ( ( ( 𝐹 ‘ 𝐵 )  −  ( 𝐹 ‘ 𝐴 ) )  +  ( 𝐹 ‘ 𝐴 ) )  =  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 112 | 59 33 | sselid | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 113 | 59 34 | sselid | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 114 | 112 113 | npcand | ⊢ ( 𝜑  →  ( ( ( 𝐺 ‘ 𝐵 )  −  ( 𝐺 ‘ 𝐴 ) )  +  ( 𝐺 ‘ 𝐴 ) )  =  ( 𝐺 ‘ 𝐵 ) ) | 
						
							| 115 | 111 114 | breq12d | ⊢ ( 𝜑  →  ( ( ( ( 𝐹 ‘ 𝐵 )  −  ( 𝐹 ‘ 𝐴 ) )  +  ( 𝐹 ‘ 𝐴 ) )  ≤  ( ( ( 𝐺 ‘ 𝐵 )  −  ( 𝐺 ‘ 𝐴 ) )  +  ( 𝐺 ‘ 𝐴 ) )  ↔  ( 𝐹 ‘ 𝐵 )  ≤  ( 𝐺 ‘ 𝐵 ) ) ) | 
						
							| 116 | 108 115 | mpbid | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐵 )  ≤  ( 𝐺 ‘ 𝐵 ) ) |