| Step |
Hyp |
Ref |
Expression |
| 1 |
|
intlewftc.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
intlewftc.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
intlewftc.3 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 4 |
|
intlewftc.4 |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 5 |
|
intlewftc.5 |
⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 6 |
|
intlewftc.6 |
⊢ ( 𝜑 → 𝐷 = ( ℝ D 𝐹 ) ) |
| 7 |
|
intlewftc.7 |
⊢ ( 𝜑 → 𝐸 = ( ℝ D 𝐺 ) ) |
| 8 |
|
intlewftc.8 |
⊢ ( 𝜑 → 𝐷 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) |
| 9 |
|
intlewftc.9 |
⊢ ( 𝜑 → 𝐸 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) |
| 10 |
|
intlewftc.10 |
⊢ ( 𝜑 → 𝐷 ∈ 𝐿1 ) |
| 11 |
|
intlewftc.11 |
⊢ ( 𝜑 → 𝐸 ∈ 𝐿1 ) |
| 12 |
|
intlewftc.12 |
⊢ ( 𝜑 → 𝐷 = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑃 ) ) |
| 13 |
|
intlewftc.13 |
⊢ ( 𝜑 → 𝐸 = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑄 ) ) |
| 14 |
|
intlewftc.14 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑃 ≤ 𝑄 ) |
| 15 |
|
intlewftc.15 |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ≤ ( 𝐺 ‘ 𝐴 ) ) |
| 16 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 17 |
4 16
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 18 |
2
|
leidd |
⊢ ( 𝜑 → 𝐵 ≤ 𝐵 ) |
| 19 |
2 3 18
|
3jca |
⊢ ( 𝜑 → ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵 ) ) |
| 20 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵 ) ) ) |
| 21 |
1 2 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵 ) ) ) |
| 22 |
19 21
|
mpbird |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 23 |
17 22
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) |
| 24 |
1
|
leidd |
⊢ ( 𝜑 → 𝐴 ≤ 𝐴 ) |
| 25 |
1 24 3
|
3jca |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) |
| 26 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ) |
| 27 |
1 2 26
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ) |
| 28 |
25 27
|
mpbird |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 29 |
17 28
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℝ ) |
| 30 |
23 29
|
resubcld |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ ) |
| 31 |
|
cncff |
⊢ ( 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 32 |
5 31
|
syl |
⊢ ( 𝜑 → 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 33 |
32 22
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐵 ) ∈ ℝ ) |
| 34 |
32 28
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐴 ) ∈ ℝ ) |
| 35 |
33 34
|
resubcld |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) ∈ ℝ ) |
| 36 |
12
|
eleq1d |
⊢ ( 𝜑 → ( 𝐷 ∈ 𝐿1 ↔ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑃 ) ∈ 𝐿1 ) ) |
| 37 |
10 36
|
mpbid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑃 ) ∈ 𝐿1 ) |
| 38 |
13
|
eleq1d |
⊢ ( 𝜑 → ( 𝐸 ∈ 𝐿1 ↔ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑄 ) ∈ 𝐿1 ) ) |
| 39 |
11 38
|
mpbid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑄 ) ∈ 𝐿1 ) |
| 40 |
|
cncff |
⊢ ( 𝐷 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) → 𝐷 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 41 |
8 40
|
syl |
⊢ ( 𝜑 → 𝐷 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 42 |
12
|
feq1d |
⊢ ( 𝜑 → ( 𝐷 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ↔ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑃 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) ) |
| 43 |
41 42
|
mpbid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑃 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 44 |
43
|
fvmptelcdm |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑃 ∈ ℝ ) |
| 45 |
|
cncff |
⊢ ( 𝐸 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) → 𝐸 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 46 |
9 45
|
syl |
⊢ ( 𝜑 → 𝐸 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 47 |
13
|
feq1d |
⊢ ( 𝜑 → ( 𝐸 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ↔ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑄 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) ) |
| 48 |
46 47
|
mpbid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑄 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 49 |
48
|
fvmptelcdm |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑄 ∈ ℝ ) |
| 50 |
37 39 44 49 14
|
itgle |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) 𝑃 d 𝑥 ≤ ∫ ( 𝐴 (,) 𝐵 ) 𝑄 d 𝑥 ) |
| 51 |
44
|
itgmpt |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) 𝑃 d 𝑥 = ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑃 ) ‘ 𝑡 ) d 𝑡 ) |
| 52 |
12
|
fveq1d |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑡 ) = ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑃 ) ‘ 𝑡 ) ) |
| 53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐷 ‘ 𝑡 ) = ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑃 ) ‘ 𝑡 ) ) |
| 54 |
53
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑃 ) ‘ 𝑡 ) = ( 𝐷 ‘ 𝑡 ) ) |
| 55 |
54
|
itgeq2dv |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑃 ) ‘ 𝑡 ) d 𝑡 = ∫ ( 𝐴 (,) 𝐵 ) ( 𝐷 ‘ 𝑡 ) d 𝑡 ) |
| 56 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐷 = ( ℝ D 𝐹 ) ) |
| 57 |
56
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐷 ‘ 𝑡 ) = ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) |
| 58 |
57
|
itgeq2dv |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( 𝐷 ‘ 𝑡 ) d 𝑡 = ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ) |
| 59 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 60 |
59
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 61 |
|
fss |
⊢ ( ( 𝐷 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐷 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 62 |
41 60 61
|
syl2anc |
⊢ ( 𝜑 → 𝐷 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 63 |
|
ssidd |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
| 64 |
|
cncfcdm |
⊢ ( ( ℂ ⊆ ℂ ∧ 𝐷 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) → ( 𝐷 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ↔ 𝐷 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) ) |
| 65 |
63 8 64
|
syl2anc |
⊢ ( 𝜑 → ( 𝐷 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ↔ 𝐷 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) ) |
| 66 |
62 65
|
mpbird |
⊢ ( 𝜑 → 𝐷 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 67 |
6
|
eleq1d |
⊢ ( 𝜑 → ( 𝐷 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ↔ ( ℝ D 𝐹 ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) ) |
| 68 |
66 67
|
mpbid |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 69 |
6 10
|
eqeltrrd |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) ∈ 𝐿1 ) |
| 70 |
|
fss |
⊢ ( ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 71 |
17 60 70
|
syl2anc |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 72 |
|
cncfcdm |
⊢ ( ( ℂ ⊆ ℂ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) → ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ↔ 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) ) |
| 73 |
63 4 72
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ↔ 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) ) |
| 74 |
71 73
|
mpbird |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 75 |
1 2 3 68 69 74
|
ftc2 |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
| 76 |
58 75
|
eqtrd |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( 𝐷 ‘ 𝑡 ) d 𝑡 = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
| 77 |
55 76
|
eqtrd |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑃 ) ‘ 𝑡 ) d 𝑡 = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
| 78 |
51 77
|
eqtrd |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) 𝑃 d 𝑥 = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
| 79 |
49
|
itgmpt |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) 𝑄 d 𝑥 = ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑄 ) ‘ 𝑡 ) d 𝑡 ) |
| 80 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐸 = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑄 ) ) |
| 81 |
80
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑄 ) = 𝐸 ) |
| 82 |
81
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑄 ) ‘ 𝑡 ) = ( 𝐸 ‘ 𝑡 ) ) |
| 83 |
82
|
itgeq2dv |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑄 ) ‘ 𝑡 ) d 𝑡 = ∫ ( 𝐴 (,) 𝐵 ) ( 𝐸 ‘ 𝑡 ) d 𝑡 ) |
| 84 |
79 83
|
eqtrd |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) 𝑄 d 𝑥 = ∫ ( 𝐴 (,) 𝐵 ) ( 𝐸 ‘ 𝑡 ) d 𝑡 ) |
| 85 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐸 = ( ℝ D 𝐺 ) ) |
| 86 |
85
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐸 ‘ 𝑡 ) = ( ( ℝ D 𝐺 ) ‘ 𝑡 ) ) |
| 87 |
86
|
itgeq2dv |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( 𝐸 ‘ 𝑡 ) d 𝑡 = ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐺 ) ‘ 𝑡 ) d 𝑡 ) |
| 88 |
|
fss |
⊢ ( ( 𝐸 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐸 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 89 |
46 60 88
|
syl2anc |
⊢ ( 𝜑 → 𝐸 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 90 |
|
cncfcdm |
⊢ ( ( ℂ ⊆ ℂ ∧ 𝐸 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) → ( 𝐸 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ↔ 𝐸 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) ) |
| 91 |
63 9 90
|
syl2anc |
⊢ ( 𝜑 → ( 𝐸 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ↔ 𝐸 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) ) |
| 92 |
89 91
|
mpbird |
⊢ ( 𝜑 → 𝐸 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 93 |
7
|
eleq1d |
⊢ ( 𝜑 → ( 𝐸 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ↔ ( ℝ D 𝐺 ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) ) |
| 94 |
92 93
|
mpbid |
⊢ ( 𝜑 → ( ℝ D 𝐺 ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 95 |
94 93
|
mpbird |
⊢ ( 𝜑 → 𝐸 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 96 |
95 93
|
mpbid |
⊢ ( 𝜑 → ( ℝ D 𝐺 ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 97 |
7 11
|
eqeltrrd |
⊢ ( 𝜑 → ( ℝ D 𝐺 ) ∈ 𝐿1 ) |
| 98 |
|
fss |
⊢ ( ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 99 |
32 60 98
|
syl2anc |
⊢ ( 𝜑 → 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 100 |
|
cncfcdm |
⊢ ( ( ℂ ⊆ ℂ ∧ 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) → ( 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ↔ 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) ) |
| 101 |
63 5 100
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ↔ 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) ) |
| 102 |
99 101
|
mpbird |
⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 103 |
1 2 3 96 97 102
|
ftc2 |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐺 ) ‘ 𝑡 ) d 𝑡 = ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) ) |
| 104 |
87 103
|
eqtrd |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( 𝐸 ‘ 𝑡 ) d 𝑡 = ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) ) |
| 105 |
84 104
|
eqtrd |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) 𝑄 d 𝑥 = ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) ) |
| 106 |
78 105
|
breq12d |
⊢ ( 𝜑 → ( ∫ ( 𝐴 (,) 𝐵 ) 𝑃 d 𝑥 ≤ ∫ ( 𝐴 (,) 𝐵 ) 𝑄 d 𝑥 ↔ ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ≤ ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) ) ) |
| 107 |
50 106
|
mpbid |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ≤ ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) ) |
| 108 |
30 29 35 34 107 15
|
le2addd |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) + ( 𝐹 ‘ 𝐴 ) ) ≤ ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) + ( 𝐺 ‘ 𝐴 ) ) ) |
| 109 |
59 23
|
sselid |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ℂ ) |
| 110 |
59 29
|
sselid |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℂ ) |
| 111 |
109 110
|
npcand |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) + ( 𝐹 ‘ 𝐴 ) ) = ( 𝐹 ‘ 𝐵 ) ) |
| 112 |
59 33
|
sselid |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐵 ) ∈ ℂ ) |
| 113 |
59 34
|
sselid |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐴 ) ∈ ℂ ) |
| 114 |
112 113
|
npcand |
⊢ ( 𝜑 → ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) + ( 𝐺 ‘ 𝐴 ) ) = ( 𝐺 ‘ 𝐵 ) ) |
| 115 |
111 114
|
breq12d |
⊢ ( 𝜑 → ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) + ( 𝐹 ‘ 𝐴 ) ) ≤ ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) + ( 𝐺 ‘ 𝐴 ) ) ↔ ( 𝐹 ‘ 𝐵 ) ≤ ( 𝐺 ‘ 𝐵 ) ) ) |
| 116 |
108 115
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ≤ ( 𝐺 ‘ 𝐵 ) ) |