Step |
Hyp |
Ref |
Expression |
1 |
|
intlewftc.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
intlewftc.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
intlewftc.3 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
4 |
|
intlewftc.4 |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
5 |
|
intlewftc.5 |
⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
6 |
|
intlewftc.6 |
⊢ ( 𝜑 → 𝐷 = ( ℝ D 𝐹 ) ) |
7 |
|
intlewftc.7 |
⊢ ( 𝜑 → 𝐸 = ( ℝ D 𝐺 ) ) |
8 |
|
intlewftc.8 |
⊢ ( 𝜑 → 𝐷 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) |
9 |
|
intlewftc.9 |
⊢ ( 𝜑 → 𝐸 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) |
10 |
|
intlewftc.10 |
⊢ ( 𝜑 → 𝐷 ∈ 𝐿1 ) |
11 |
|
intlewftc.11 |
⊢ ( 𝜑 → 𝐸 ∈ 𝐿1 ) |
12 |
|
intlewftc.12 |
⊢ ( 𝜑 → 𝐷 = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑃 ) ) |
13 |
|
intlewftc.13 |
⊢ ( 𝜑 → 𝐸 = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑄 ) ) |
14 |
|
intlewftc.14 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑃 ≤ 𝑄 ) |
15 |
|
intlewftc.15 |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ≤ ( 𝐺 ‘ 𝐴 ) ) |
16 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
17 |
4 16
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
18 |
2
|
leidd |
⊢ ( 𝜑 → 𝐵 ≤ 𝐵 ) |
19 |
2 3 18
|
3jca |
⊢ ( 𝜑 → ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵 ) ) |
20 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵 ) ) ) |
21 |
1 2 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵 ) ) ) |
22 |
19 21
|
mpbird |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
23 |
17 22
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) |
24 |
1
|
leidd |
⊢ ( 𝜑 → 𝐴 ≤ 𝐴 ) |
25 |
1 24 3
|
3jca |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) |
26 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ) |
27 |
1 2 26
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ) |
28 |
25 27
|
mpbird |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
29 |
17 28
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℝ ) |
30 |
23 29
|
resubcld |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ ) |
31 |
|
cncff |
⊢ ( 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
32 |
5 31
|
syl |
⊢ ( 𝜑 → 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
33 |
32 22
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐵 ) ∈ ℝ ) |
34 |
32 28
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐴 ) ∈ ℝ ) |
35 |
33 34
|
resubcld |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) ∈ ℝ ) |
36 |
12
|
eleq1d |
⊢ ( 𝜑 → ( 𝐷 ∈ 𝐿1 ↔ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑃 ) ∈ 𝐿1 ) ) |
37 |
10 36
|
mpbid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑃 ) ∈ 𝐿1 ) |
38 |
13
|
eleq1d |
⊢ ( 𝜑 → ( 𝐸 ∈ 𝐿1 ↔ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑄 ) ∈ 𝐿1 ) ) |
39 |
11 38
|
mpbid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑄 ) ∈ 𝐿1 ) |
40 |
|
cncff |
⊢ ( 𝐷 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) → 𝐷 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
41 |
8 40
|
syl |
⊢ ( 𝜑 → 𝐷 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
42 |
12
|
feq1d |
⊢ ( 𝜑 → ( 𝐷 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ↔ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑃 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) ) |
43 |
41 42
|
mpbid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑃 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
44 |
43
|
fvmptelrn |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑃 ∈ ℝ ) |
45 |
|
cncff |
⊢ ( 𝐸 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) → 𝐸 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
46 |
9 45
|
syl |
⊢ ( 𝜑 → 𝐸 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
47 |
13
|
feq1d |
⊢ ( 𝜑 → ( 𝐸 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ↔ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑄 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) ) |
48 |
46 47
|
mpbid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑄 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
49 |
48
|
fvmptelrn |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑄 ∈ ℝ ) |
50 |
37 39 44 49 14
|
itgle |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) 𝑃 d 𝑥 ≤ ∫ ( 𝐴 (,) 𝐵 ) 𝑄 d 𝑥 ) |
51 |
44
|
itgmpt |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) 𝑃 d 𝑥 = ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑃 ) ‘ 𝑡 ) d 𝑡 ) |
52 |
12
|
fveq1d |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑡 ) = ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑃 ) ‘ 𝑡 ) ) |
53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐷 ‘ 𝑡 ) = ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑃 ) ‘ 𝑡 ) ) |
54 |
53
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑃 ) ‘ 𝑡 ) = ( 𝐷 ‘ 𝑡 ) ) |
55 |
54
|
itgeq2dv |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑃 ) ‘ 𝑡 ) d 𝑡 = ∫ ( 𝐴 (,) 𝐵 ) ( 𝐷 ‘ 𝑡 ) d 𝑡 ) |
56 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐷 = ( ℝ D 𝐹 ) ) |
57 |
56
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐷 ‘ 𝑡 ) = ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) |
58 |
57
|
itgeq2dv |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( 𝐷 ‘ 𝑡 ) d 𝑡 = ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 ) |
59 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
60 |
59
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
61 |
|
fss |
⊢ ( ( 𝐷 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐷 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
62 |
41 60 61
|
syl2anc |
⊢ ( 𝜑 → 𝐷 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
63 |
|
ssidd |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
64 |
|
cncffvrn |
⊢ ( ( ℂ ⊆ ℂ ∧ 𝐷 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) → ( 𝐷 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ↔ 𝐷 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) ) |
65 |
63 8 64
|
syl2anc |
⊢ ( 𝜑 → ( 𝐷 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ↔ 𝐷 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) ) |
66 |
62 65
|
mpbird |
⊢ ( 𝜑 → 𝐷 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
67 |
6
|
eleq1d |
⊢ ( 𝜑 → ( 𝐷 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ↔ ( ℝ D 𝐹 ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) ) |
68 |
66 67
|
mpbid |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
69 |
6 10
|
eqeltrrd |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) ∈ 𝐿1 ) |
70 |
|
fss |
⊢ ( ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
71 |
17 60 70
|
syl2anc |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
72 |
|
cncffvrn |
⊢ ( ( ℂ ⊆ ℂ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) → ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ↔ 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) ) |
73 |
63 4 72
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ↔ 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) ) |
74 |
71 73
|
mpbird |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
75 |
1 2 3 68 69 74
|
ftc2 |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑡 ) d 𝑡 = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
76 |
58 75
|
eqtrd |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( 𝐷 ‘ 𝑡 ) d 𝑡 = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
77 |
55 76
|
eqtrd |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑃 ) ‘ 𝑡 ) d 𝑡 = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
78 |
51 77
|
eqtrd |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) 𝑃 d 𝑥 = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
79 |
49
|
itgmpt |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) 𝑄 d 𝑥 = ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑄 ) ‘ 𝑡 ) d 𝑡 ) |
80 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐸 = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑄 ) ) |
81 |
80
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑄 ) = 𝐸 ) |
82 |
81
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑄 ) ‘ 𝑡 ) = ( 𝐸 ‘ 𝑡 ) ) |
83 |
82
|
itgeq2dv |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝑄 ) ‘ 𝑡 ) d 𝑡 = ∫ ( 𝐴 (,) 𝐵 ) ( 𝐸 ‘ 𝑡 ) d 𝑡 ) |
84 |
79 83
|
eqtrd |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) 𝑄 d 𝑥 = ∫ ( 𝐴 (,) 𝐵 ) ( 𝐸 ‘ 𝑡 ) d 𝑡 ) |
85 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐸 = ( ℝ D 𝐺 ) ) |
86 |
85
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐸 ‘ 𝑡 ) = ( ( ℝ D 𝐺 ) ‘ 𝑡 ) ) |
87 |
86
|
itgeq2dv |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( 𝐸 ‘ 𝑡 ) d 𝑡 = ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐺 ) ‘ 𝑡 ) d 𝑡 ) |
88 |
|
fss |
⊢ ( ( 𝐸 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐸 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
89 |
46 60 88
|
syl2anc |
⊢ ( 𝜑 → 𝐸 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
90 |
|
cncffvrn |
⊢ ( ( ℂ ⊆ ℂ ∧ 𝐸 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) → ( 𝐸 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ↔ 𝐸 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) ) |
91 |
63 9 90
|
syl2anc |
⊢ ( 𝜑 → ( 𝐸 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ↔ 𝐸 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) ) |
92 |
89 91
|
mpbird |
⊢ ( 𝜑 → 𝐸 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
93 |
7
|
eleq1d |
⊢ ( 𝜑 → ( 𝐸 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ↔ ( ℝ D 𝐺 ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) ) |
94 |
92 93
|
mpbid |
⊢ ( 𝜑 → ( ℝ D 𝐺 ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
95 |
94 93
|
mpbird |
⊢ ( 𝜑 → 𝐸 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
96 |
95 93
|
mpbid |
⊢ ( 𝜑 → ( ℝ D 𝐺 ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
97 |
7 11
|
eqeltrrd |
⊢ ( 𝜑 → ( ℝ D 𝐺 ) ∈ 𝐿1 ) |
98 |
|
fss |
⊢ ( ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
99 |
32 60 98
|
syl2anc |
⊢ ( 𝜑 → 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
100 |
|
cncffvrn |
⊢ ( ( ℂ ⊆ ℂ ∧ 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) → ( 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ↔ 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) ) |
101 |
63 5 100
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ↔ 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) ) |
102 |
99 101
|
mpbird |
⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
103 |
1 2 3 96 97 102
|
ftc2 |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐺 ) ‘ 𝑡 ) d 𝑡 = ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) ) |
104 |
87 103
|
eqtrd |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( 𝐸 ‘ 𝑡 ) d 𝑡 = ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) ) |
105 |
84 104
|
eqtrd |
⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) 𝑄 d 𝑥 = ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) ) |
106 |
78 105
|
breq12d |
⊢ ( 𝜑 → ( ∫ ( 𝐴 (,) 𝐵 ) 𝑃 d 𝑥 ≤ ∫ ( 𝐴 (,) 𝐵 ) 𝑄 d 𝑥 ↔ ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ≤ ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) ) ) |
107 |
50 106
|
mpbid |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ≤ ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) ) |
108 |
30 29 35 34 107 15
|
le2addd |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) + ( 𝐹 ‘ 𝐴 ) ) ≤ ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) + ( 𝐺 ‘ 𝐴 ) ) ) |
109 |
59 23
|
sselid |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ℂ ) |
110 |
59 29
|
sselid |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℂ ) |
111 |
109 110
|
npcand |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) + ( 𝐹 ‘ 𝐴 ) ) = ( 𝐹 ‘ 𝐵 ) ) |
112 |
59 33
|
sselid |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐵 ) ∈ ℂ ) |
113 |
59 34
|
sselid |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐴 ) ∈ ℂ ) |
114 |
112 113
|
npcand |
⊢ ( 𝜑 → ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) + ( 𝐺 ‘ 𝐴 ) ) = ( 𝐺 ‘ 𝐵 ) ) |
115 |
111 114
|
breq12d |
⊢ ( 𝜑 → ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) + ( 𝐹 ‘ 𝐴 ) ) ≤ ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) + ( 𝐺 ‘ 𝐴 ) ) ↔ ( 𝐹 ‘ 𝐵 ) ≤ ( 𝐺 ‘ 𝐵 ) ) ) |
116 |
108 115
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ≤ ( 𝐺 ‘ 𝐵 ) ) |