| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngidpropd.1 |
|- ( ph -> B = ( Base ` K ) ) |
| 2 |
|
rngidpropd.2 |
|- ( ph -> B = ( Base ` L ) ) |
| 3 |
|
rngidpropd.3 |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
| 4 |
|
eqid |
|- ( Unit ` K ) = ( Unit ` K ) |
| 5 |
|
eqid |
|- ( ( mulGrp ` K ) |`s ( Unit ` K ) ) = ( ( mulGrp ` K ) |`s ( Unit ` K ) ) |
| 6 |
4 5
|
unitgrpbas |
|- ( Unit ` K ) = ( Base ` ( ( mulGrp ` K ) |`s ( Unit ` K ) ) ) |
| 7 |
6
|
a1i |
|- ( ph -> ( Unit ` K ) = ( Base ` ( ( mulGrp ` K ) |`s ( Unit ` K ) ) ) ) |
| 8 |
1 2 3
|
unitpropd |
|- ( ph -> ( Unit ` K ) = ( Unit ` L ) ) |
| 9 |
|
eqid |
|- ( Unit ` L ) = ( Unit ` L ) |
| 10 |
|
eqid |
|- ( ( mulGrp ` L ) |`s ( Unit ` L ) ) = ( ( mulGrp ` L ) |`s ( Unit ` L ) ) |
| 11 |
9 10
|
unitgrpbas |
|- ( Unit ` L ) = ( Base ` ( ( mulGrp ` L ) |`s ( Unit ` L ) ) ) |
| 12 |
8 11
|
eqtrdi |
|- ( ph -> ( Unit ` K ) = ( Base ` ( ( mulGrp ` L ) |`s ( Unit ` L ) ) ) ) |
| 13 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 14 |
13 4
|
unitss |
|- ( Unit ` K ) C_ ( Base ` K ) |
| 15 |
14 1
|
sseqtrrid |
|- ( ph -> ( Unit ` K ) C_ B ) |
| 16 |
15
|
sselda |
|- ( ( ph /\ x e. ( Unit ` K ) ) -> x e. B ) |
| 17 |
15
|
sselda |
|- ( ( ph /\ y e. ( Unit ` K ) ) -> y e. B ) |
| 18 |
16 17
|
anim12dan |
|- ( ( ph /\ ( x e. ( Unit ` K ) /\ y e. ( Unit ` K ) ) ) -> ( x e. B /\ y e. B ) ) |
| 19 |
18 3
|
syldan |
|- ( ( ph /\ ( x e. ( Unit ` K ) /\ y e. ( Unit ` K ) ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
| 20 |
|
fvex |
|- ( Unit ` K ) e. _V |
| 21 |
|
eqid |
|- ( mulGrp ` K ) = ( mulGrp ` K ) |
| 22 |
|
eqid |
|- ( .r ` K ) = ( .r ` K ) |
| 23 |
21 22
|
mgpplusg |
|- ( .r ` K ) = ( +g ` ( mulGrp ` K ) ) |
| 24 |
5 23
|
ressplusg |
|- ( ( Unit ` K ) e. _V -> ( .r ` K ) = ( +g ` ( ( mulGrp ` K ) |`s ( Unit ` K ) ) ) ) |
| 25 |
20 24
|
ax-mp |
|- ( .r ` K ) = ( +g ` ( ( mulGrp ` K ) |`s ( Unit ` K ) ) ) |
| 26 |
25
|
oveqi |
|- ( x ( .r ` K ) y ) = ( x ( +g ` ( ( mulGrp ` K ) |`s ( Unit ` K ) ) ) y ) |
| 27 |
|
fvex |
|- ( Unit ` L ) e. _V |
| 28 |
|
eqid |
|- ( mulGrp ` L ) = ( mulGrp ` L ) |
| 29 |
|
eqid |
|- ( .r ` L ) = ( .r ` L ) |
| 30 |
28 29
|
mgpplusg |
|- ( .r ` L ) = ( +g ` ( mulGrp ` L ) ) |
| 31 |
10 30
|
ressplusg |
|- ( ( Unit ` L ) e. _V -> ( .r ` L ) = ( +g ` ( ( mulGrp ` L ) |`s ( Unit ` L ) ) ) ) |
| 32 |
27 31
|
ax-mp |
|- ( .r ` L ) = ( +g ` ( ( mulGrp ` L ) |`s ( Unit ` L ) ) ) |
| 33 |
32
|
oveqi |
|- ( x ( .r ` L ) y ) = ( x ( +g ` ( ( mulGrp ` L ) |`s ( Unit ` L ) ) ) y ) |
| 34 |
19 26 33
|
3eqtr3g |
|- ( ( ph /\ ( x e. ( Unit ` K ) /\ y e. ( Unit ` K ) ) ) -> ( x ( +g ` ( ( mulGrp ` K ) |`s ( Unit ` K ) ) ) y ) = ( x ( +g ` ( ( mulGrp ` L ) |`s ( Unit ` L ) ) ) y ) ) |
| 35 |
7 12 34
|
grpinvpropd |
|- ( ph -> ( invg ` ( ( mulGrp ` K ) |`s ( Unit ` K ) ) ) = ( invg ` ( ( mulGrp ` L ) |`s ( Unit ` L ) ) ) ) |
| 36 |
|
eqid |
|- ( invr ` K ) = ( invr ` K ) |
| 37 |
4 5 36
|
invrfval |
|- ( invr ` K ) = ( invg ` ( ( mulGrp ` K ) |`s ( Unit ` K ) ) ) |
| 38 |
|
eqid |
|- ( invr ` L ) = ( invr ` L ) |
| 39 |
9 10 38
|
invrfval |
|- ( invr ` L ) = ( invg ` ( ( mulGrp ` L ) |`s ( Unit ` L ) ) ) |
| 40 |
35 37 39
|
3eqtr4g |
|- ( ph -> ( invr ` K ) = ( invr ` L ) ) |