| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rngidpropd.1 | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐾 ) ) | 
						
							| 2 |  | rngidpropd.2 | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐿 ) ) | 
						
							| 3 |  | rngidpropd.3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) | 
						
							| 4 |  | eqid | ⊢ ( Unit ‘ 𝐾 )  =  ( Unit ‘ 𝐾 ) | 
						
							| 5 |  | eqid | ⊢ ( ( mulGrp ‘ 𝐾 )  ↾s  ( Unit ‘ 𝐾 ) )  =  ( ( mulGrp ‘ 𝐾 )  ↾s  ( Unit ‘ 𝐾 ) ) | 
						
							| 6 | 4 5 | unitgrpbas | ⊢ ( Unit ‘ 𝐾 )  =  ( Base ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  ( Unit ‘ 𝐾 ) ) ) | 
						
							| 7 | 6 | a1i | ⊢ ( 𝜑  →  ( Unit ‘ 𝐾 )  =  ( Base ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  ( Unit ‘ 𝐾 ) ) ) ) | 
						
							| 8 | 1 2 3 | unitpropd | ⊢ ( 𝜑  →  ( Unit ‘ 𝐾 )  =  ( Unit ‘ 𝐿 ) ) | 
						
							| 9 |  | eqid | ⊢ ( Unit ‘ 𝐿 )  =  ( Unit ‘ 𝐿 ) | 
						
							| 10 |  | eqid | ⊢ ( ( mulGrp ‘ 𝐿 )  ↾s  ( Unit ‘ 𝐿 ) )  =  ( ( mulGrp ‘ 𝐿 )  ↾s  ( Unit ‘ 𝐿 ) ) | 
						
							| 11 | 9 10 | unitgrpbas | ⊢ ( Unit ‘ 𝐿 )  =  ( Base ‘ ( ( mulGrp ‘ 𝐿 )  ↾s  ( Unit ‘ 𝐿 ) ) ) | 
						
							| 12 | 8 11 | eqtrdi | ⊢ ( 𝜑  →  ( Unit ‘ 𝐾 )  =  ( Base ‘ ( ( mulGrp ‘ 𝐿 )  ↾s  ( Unit ‘ 𝐿 ) ) ) ) | 
						
							| 13 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 14 | 13 4 | unitss | ⊢ ( Unit ‘ 𝐾 )  ⊆  ( Base ‘ 𝐾 ) | 
						
							| 15 | 14 1 | sseqtrrid | ⊢ ( 𝜑  →  ( Unit ‘ 𝐾 )  ⊆  𝐵 ) | 
						
							| 16 | 15 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Unit ‘ 𝐾 ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 17 | 15 | sselda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( Unit ‘ 𝐾 ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 18 | 16 17 | anim12dan | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Unit ‘ 𝐾 )  ∧  𝑦  ∈  ( Unit ‘ 𝐾 ) ) )  →  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) ) | 
						
							| 19 | 18 3 | syldan | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Unit ‘ 𝐾 )  ∧  𝑦  ∈  ( Unit ‘ 𝐾 ) ) )  →  ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) | 
						
							| 20 |  | fvex | ⊢ ( Unit ‘ 𝐾 )  ∈  V | 
						
							| 21 |  | eqid | ⊢ ( mulGrp ‘ 𝐾 )  =  ( mulGrp ‘ 𝐾 ) | 
						
							| 22 |  | eqid | ⊢ ( .r ‘ 𝐾 )  =  ( .r ‘ 𝐾 ) | 
						
							| 23 | 21 22 | mgpplusg | ⊢ ( .r ‘ 𝐾 )  =  ( +g ‘ ( mulGrp ‘ 𝐾 ) ) | 
						
							| 24 | 5 23 | ressplusg | ⊢ ( ( Unit ‘ 𝐾 )  ∈  V  →  ( .r ‘ 𝐾 )  =  ( +g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  ( Unit ‘ 𝐾 ) ) ) ) | 
						
							| 25 | 20 24 | ax-mp | ⊢ ( .r ‘ 𝐾 )  =  ( +g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  ( Unit ‘ 𝐾 ) ) ) | 
						
							| 26 | 25 | oveqi | ⊢ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( +g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  ( Unit ‘ 𝐾 ) ) ) 𝑦 ) | 
						
							| 27 |  | fvex | ⊢ ( Unit ‘ 𝐿 )  ∈  V | 
						
							| 28 |  | eqid | ⊢ ( mulGrp ‘ 𝐿 )  =  ( mulGrp ‘ 𝐿 ) | 
						
							| 29 |  | eqid | ⊢ ( .r ‘ 𝐿 )  =  ( .r ‘ 𝐿 ) | 
						
							| 30 | 28 29 | mgpplusg | ⊢ ( .r ‘ 𝐿 )  =  ( +g ‘ ( mulGrp ‘ 𝐿 ) ) | 
						
							| 31 | 10 30 | ressplusg | ⊢ ( ( Unit ‘ 𝐿 )  ∈  V  →  ( .r ‘ 𝐿 )  =  ( +g ‘ ( ( mulGrp ‘ 𝐿 )  ↾s  ( Unit ‘ 𝐿 ) ) ) ) | 
						
							| 32 | 27 31 | ax-mp | ⊢ ( .r ‘ 𝐿 )  =  ( +g ‘ ( ( mulGrp ‘ 𝐿 )  ↾s  ( Unit ‘ 𝐿 ) ) ) | 
						
							| 33 | 32 | oveqi | ⊢ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 )  =  ( 𝑥 ( +g ‘ ( ( mulGrp ‘ 𝐿 )  ↾s  ( Unit ‘ 𝐿 ) ) ) 𝑦 ) | 
						
							| 34 | 19 26 33 | 3eqtr3g | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Unit ‘ 𝐾 )  ∧  𝑦  ∈  ( Unit ‘ 𝐾 ) ) )  →  ( 𝑥 ( +g ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  ( Unit ‘ 𝐾 ) ) ) 𝑦 )  =  ( 𝑥 ( +g ‘ ( ( mulGrp ‘ 𝐿 )  ↾s  ( Unit ‘ 𝐿 ) ) ) 𝑦 ) ) | 
						
							| 35 | 7 12 34 | grpinvpropd | ⊢ ( 𝜑  →  ( invg ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  ( Unit ‘ 𝐾 ) ) )  =  ( invg ‘ ( ( mulGrp ‘ 𝐿 )  ↾s  ( Unit ‘ 𝐿 ) ) ) ) | 
						
							| 36 |  | eqid | ⊢ ( invr ‘ 𝐾 )  =  ( invr ‘ 𝐾 ) | 
						
							| 37 | 4 5 36 | invrfval | ⊢ ( invr ‘ 𝐾 )  =  ( invg ‘ ( ( mulGrp ‘ 𝐾 )  ↾s  ( Unit ‘ 𝐾 ) ) ) | 
						
							| 38 |  | eqid | ⊢ ( invr ‘ 𝐿 )  =  ( invr ‘ 𝐿 ) | 
						
							| 39 | 9 10 38 | invrfval | ⊢ ( invr ‘ 𝐿 )  =  ( invg ‘ ( ( mulGrp ‘ 𝐿 )  ↾s  ( Unit ‘ 𝐿 ) ) ) | 
						
							| 40 | 35 37 39 | 3eqtr4g | ⊢ ( 𝜑  →  ( invr ‘ 𝐾 )  =  ( invr ‘ 𝐿 ) ) |