Metamath Proof Explorer


Theorem isline4N

Description: Definition of line in terms of original lattice elements. (Contributed by NM, 16-Jun-2012) (New usage is discouraged.)

Ref Expression
Hypotheses isline4.b
|- B = ( Base ` K )
isline4.c
|- C = ( 
isline4.a
|- A = ( Atoms ` K )
isline4.n
|- N = ( Lines ` K )
isline4.m
|- M = ( pmap ` K )
Assertion isline4N
|- ( ( K e. HL /\ X e. B ) -> ( ( M ` X ) e. N <-> E. p e. A p C X ) )

Proof

Step Hyp Ref Expression
1 isline4.b
 |-  B = ( Base ` K )
2 isline4.c
 |-  C = ( 
3 isline4.a
 |-  A = ( Atoms ` K )
4 isline4.n
 |-  N = ( Lines ` K )
5 isline4.m
 |-  M = ( pmap ` K )
6 eqid
 |-  ( join ` K ) = ( join ` K )
7 1 6 3 4 5 isline3
 |-  ( ( K e. HL /\ X e. B ) -> ( ( M ` X ) e. N <-> E. p e. A E. q e. A ( p =/= q /\ X = ( p ( join ` K ) q ) ) ) )
8 simpll
 |-  ( ( ( K e. HL /\ X e. B ) /\ p e. A ) -> K e. HL )
9 1 3 atbase
 |-  ( p e. A -> p e. B )
10 9 adantl
 |-  ( ( ( K e. HL /\ X e. B ) /\ p e. A ) -> p e. B )
11 simplr
 |-  ( ( ( K e. HL /\ X e. B ) /\ p e. A ) -> X e. B )
12 eqid
 |-  ( le ` K ) = ( le ` K )
13 1 12 6 2 3 cvrval3
 |-  ( ( K e. HL /\ p e. B /\ X e. B ) -> ( p C X <-> E. q e. A ( -. q ( le ` K ) p /\ ( p ( join ` K ) q ) = X ) ) )
14 8 10 11 13 syl3anc
 |-  ( ( ( K e. HL /\ X e. B ) /\ p e. A ) -> ( p C X <-> E. q e. A ( -. q ( le ` K ) p /\ ( p ( join ` K ) q ) = X ) ) )
15 hlatl
 |-  ( K e. HL -> K e. AtLat )
16 15 ad3antrrr
 |-  ( ( ( ( K e. HL /\ X e. B ) /\ p e. A ) /\ q e. A ) -> K e. AtLat )
17 simpr
 |-  ( ( ( ( K e. HL /\ X e. B ) /\ p e. A ) /\ q e. A ) -> q e. A )
18 simplr
 |-  ( ( ( ( K e. HL /\ X e. B ) /\ p e. A ) /\ q e. A ) -> p e. A )
19 12 3 atncmp
 |-  ( ( K e. AtLat /\ q e. A /\ p e. A ) -> ( -. q ( le ` K ) p <-> q =/= p ) )
20 16 17 18 19 syl3anc
 |-  ( ( ( ( K e. HL /\ X e. B ) /\ p e. A ) /\ q e. A ) -> ( -. q ( le ` K ) p <-> q =/= p ) )
21 necom
 |-  ( q =/= p <-> p =/= q )
22 20 21 bitrdi
 |-  ( ( ( ( K e. HL /\ X e. B ) /\ p e. A ) /\ q e. A ) -> ( -. q ( le ` K ) p <-> p =/= q ) )
23 eqcom
 |-  ( ( p ( join ` K ) q ) = X <-> X = ( p ( join ` K ) q ) )
24 23 a1i
 |-  ( ( ( ( K e. HL /\ X e. B ) /\ p e. A ) /\ q e. A ) -> ( ( p ( join ` K ) q ) = X <-> X = ( p ( join ` K ) q ) ) )
25 22 24 anbi12d
 |-  ( ( ( ( K e. HL /\ X e. B ) /\ p e. A ) /\ q e. A ) -> ( ( -. q ( le ` K ) p /\ ( p ( join ` K ) q ) = X ) <-> ( p =/= q /\ X = ( p ( join ` K ) q ) ) ) )
26 25 rexbidva
 |-  ( ( ( K e. HL /\ X e. B ) /\ p e. A ) -> ( E. q e. A ( -. q ( le ` K ) p /\ ( p ( join ` K ) q ) = X ) <-> E. q e. A ( p =/= q /\ X = ( p ( join ` K ) q ) ) ) )
27 14 26 bitrd
 |-  ( ( ( K e. HL /\ X e. B ) /\ p e. A ) -> ( p C X <-> E. q e. A ( p =/= q /\ X = ( p ( join ` K ) q ) ) ) )
28 27 rexbidva
 |-  ( ( K e. HL /\ X e. B ) -> ( E. p e. A p C X <-> E. p e. A E. q e. A ( p =/= q /\ X = ( p ( join ` K ) q ) ) ) )
29 7 28 bitr4d
 |-  ( ( K e. HL /\ X e. B ) -> ( ( M ` X ) e. N <-> E. p e. A p C X ) )