Step |
Hyp |
Ref |
Expression |
1 |
|
isline4.b |
|- B = ( Base ` K ) |
2 |
|
isline4.c |
|- C = ( |
3 |
|
isline4.a |
|- A = ( Atoms ` K ) |
4 |
|
isline4.n |
|- N = ( Lines ` K ) |
5 |
|
isline4.m |
|- M = ( pmap ` K ) |
6 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
7 |
1 6 3 4 5
|
isline3 |
|- ( ( K e. HL /\ X e. B ) -> ( ( M ` X ) e. N <-> E. p e. A E. q e. A ( p =/= q /\ X = ( p ( join ` K ) q ) ) ) ) |
8 |
|
simpll |
|- ( ( ( K e. HL /\ X e. B ) /\ p e. A ) -> K e. HL ) |
9 |
1 3
|
atbase |
|- ( p e. A -> p e. B ) |
10 |
9
|
adantl |
|- ( ( ( K e. HL /\ X e. B ) /\ p e. A ) -> p e. B ) |
11 |
|
simplr |
|- ( ( ( K e. HL /\ X e. B ) /\ p e. A ) -> X e. B ) |
12 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
13 |
1 12 6 2 3
|
cvrval3 |
|- ( ( K e. HL /\ p e. B /\ X e. B ) -> ( p C X <-> E. q e. A ( -. q ( le ` K ) p /\ ( p ( join ` K ) q ) = X ) ) ) |
14 |
8 10 11 13
|
syl3anc |
|- ( ( ( K e. HL /\ X e. B ) /\ p e. A ) -> ( p C X <-> E. q e. A ( -. q ( le ` K ) p /\ ( p ( join ` K ) q ) = X ) ) ) |
15 |
|
hlatl |
|- ( K e. HL -> K e. AtLat ) |
16 |
15
|
ad3antrrr |
|- ( ( ( ( K e. HL /\ X e. B ) /\ p e. A ) /\ q e. A ) -> K e. AtLat ) |
17 |
|
simpr |
|- ( ( ( ( K e. HL /\ X e. B ) /\ p e. A ) /\ q e. A ) -> q e. A ) |
18 |
|
simplr |
|- ( ( ( ( K e. HL /\ X e. B ) /\ p e. A ) /\ q e. A ) -> p e. A ) |
19 |
12 3
|
atncmp |
|- ( ( K e. AtLat /\ q e. A /\ p e. A ) -> ( -. q ( le ` K ) p <-> q =/= p ) ) |
20 |
16 17 18 19
|
syl3anc |
|- ( ( ( ( K e. HL /\ X e. B ) /\ p e. A ) /\ q e. A ) -> ( -. q ( le ` K ) p <-> q =/= p ) ) |
21 |
|
necom |
|- ( q =/= p <-> p =/= q ) |
22 |
20 21
|
bitrdi |
|- ( ( ( ( K e. HL /\ X e. B ) /\ p e. A ) /\ q e. A ) -> ( -. q ( le ` K ) p <-> p =/= q ) ) |
23 |
|
eqcom |
|- ( ( p ( join ` K ) q ) = X <-> X = ( p ( join ` K ) q ) ) |
24 |
23
|
a1i |
|- ( ( ( ( K e. HL /\ X e. B ) /\ p e. A ) /\ q e. A ) -> ( ( p ( join ` K ) q ) = X <-> X = ( p ( join ` K ) q ) ) ) |
25 |
22 24
|
anbi12d |
|- ( ( ( ( K e. HL /\ X e. B ) /\ p e. A ) /\ q e. A ) -> ( ( -. q ( le ` K ) p /\ ( p ( join ` K ) q ) = X ) <-> ( p =/= q /\ X = ( p ( join ` K ) q ) ) ) ) |
26 |
25
|
rexbidva |
|- ( ( ( K e. HL /\ X e. B ) /\ p e. A ) -> ( E. q e. A ( -. q ( le ` K ) p /\ ( p ( join ` K ) q ) = X ) <-> E. q e. A ( p =/= q /\ X = ( p ( join ` K ) q ) ) ) ) |
27 |
14 26
|
bitrd |
|- ( ( ( K e. HL /\ X e. B ) /\ p e. A ) -> ( p C X <-> E. q e. A ( p =/= q /\ X = ( p ( join ` K ) q ) ) ) ) |
28 |
27
|
rexbidva |
|- ( ( K e. HL /\ X e. B ) -> ( E. p e. A p C X <-> E. p e. A E. q e. A ( p =/= q /\ X = ( p ( join ` K ) q ) ) ) ) |
29 |
7 28
|
bitr4d |
|- ( ( K e. HL /\ X e. B ) -> ( ( M ` X ) e. N <-> E. p e. A p C X ) ) |