Metamath Proof Explorer


Theorem isline4N

Description: Definition of line in terms of original lattice elements. (Contributed by NM, 16-Jun-2012) (New usage is discouraged.)

Ref Expression
Hypotheses isline4.b B=BaseK
isline4.c C=K
isline4.a A=AtomsK
isline4.n N=LinesK
isline4.m M=pmapK
Assertion isline4N KHLXBMXNpApCX

Proof

Step Hyp Ref Expression
1 isline4.b B=BaseK
2 isline4.c C=K
3 isline4.a A=AtomsK
4 isline4.n N=LinesK
5 isline4.m M=pmapK
6 eqid joinK=joinK
7 1 6 3 4 5 isline3 KHLXBMXNpAqApqX=pjoinKq
8 simpll KHLXBpAKHL
9 1 3 atbase pApB
10 9 adantl KHLXBpApB
11 simplr KHLXBpAXB
12 eqid K=K
13 1 12 6 2 3 cvrval3 KHLpBXBpCXqA¬qKppjoinKq=X
14 8 10 11 13 syl3anc KHLXBpApCXqA¬qKppjoinKq=X
15 hlatl KHLKAtLat
16 15 ad3antrrr KHLXBpAqAKAtLat
17 simpr KHLXBpAqAqA
18 simplr KHLXBpAqApA
19 12 3 atncmp KAtLatqApA¬qKpqp
20 16 17 18 19 syl3anc KHLXBpAqA¬qKpqp
21 necom qppq
22 20 21 bitrdi KHLXBpAqA¬qKppq
23 eqcom pjoinKq=XX=pjoinKq
24 23 a1i KHLXBpAqApjoinKq=XX=pjoinKq
25 22 24 anbi12d KHLXBpAqA¬qKppjoinKq=XpqX=pjoinKq
26 25 rexbidva KHLXBpAqA¬qKppjoinKq=XqApqX=pjoinKq
27 14 26 bitrd KHLXBpApCXqApqX=pjoinKq
28 27 rexbidva KHLXBpApCXpAqApqX=pjoinKq
29 7 28 bitr4d KHLXBMXNpApCX