Step |
Hyp |
Ref |
Expression |
1 |
|
2re |
|- 2 e. RR |
2 |
|
eluzelre |
|- ( A e. ( ZZ>= ` 2 ) -> A e. RR ) |
3 |
2
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> A e. RR ) |
4 |
|
remulcl |
|- ( ( 2 e. RR /\ A e. RR ) -> ( 2 x. A ) e. RR ) |
5 |
1 3 4
|
sylancr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( 2 x. A ) e. RR ) |
6 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
7 |
6
|
adantl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> N e. ZZ ) |
8 |
7
|
peano2zd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( N + 1 ) e. ZZ ) |
9 |
|
frmy |
|- rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ |
10 |
9
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( N + 1 ) e. ZZ ) -> ( A rmY ( N + 1 ) ) e. ZZ ) |
11 |
10
|
zred |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( N + 1 ) e. ZZ ) -> ( A rmY ( N + 1 ) ) e. RR ) |
12 |
8 11
|
syldan |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmY ( N + 1 ) ) e. RR ) |
13 |
5 12
|
remulcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( ( 2 x. A ) x. ( A rmY ( N + 1 ) ) ) e. RR ) |
14 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
15 |
14
|
adantl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> N e. CC ) |
16 |
|
ax-1cn |
|- 1 e. CC |
17 |
|
pncan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N + 1 ) - 1 ) = N ) |
18 |
15 16 17
|
sylancl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( ( N + 1 ) - 1 ) = N ) |
19 |
18
|
oveq2d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmY ( ( N + 1 ) - 1 ) ) = ( A rmY N ) ) |
20 |
9
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. ZZ ) |
21 |
20
|
zred |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. RR ) |
22 |
6 21
|
sylan2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmY N ) e. RR ) |
23 |
19 22
|
eqeltrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmY ( ( N + 1 ) - 1 ) ) e. RR ) |
24 |
13 23
|
resubcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( ( ( 2 x. A ) x. ( A rmY ( N + 1 ) ) ) - ( A rmY ( ( N + 1 ) - 1 ) ) ) e. RR ) |
25 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
26 |
25
|
adantl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> N e. NN0 ) |
27 |
5 26
|
reexpcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( ( 2 x. A ) ^ N ) e. RR ) |
28 |
5 27
|
remulcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( ( 2 x. A ) x. ( ( 2 x. A ) ^ N ) ) e. RR ) |
29 |
|
rmy0 |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmY 0 ) = 0 ) |
30 |
29
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmY 0 ) = 0 ) |
31 |
|
nngt0 |
|- ( N e. NN -> 0 < N ) |
32 |
31
|
adantl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> 0 < N ) |
33 |
|
simpl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> A e. ( ZZ>= ` 2 ) ) |
34 |
|
0zd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> 0 e. ZZ ) |
35 |
|
ltrmy |
|- ( ( A e. ( ZZ>= ` 2 ) /\ 0 e. ZZ /\ N e. ZZ ) -> ( 0 < N <-> ( A rmY 0 ) < ( A rmY N ) ) ) |
36 |
33 34 7 35
|
syl3anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( 0 < N <-> ( A rmY 0 ) < ( A rmY N ) ) ) |
37 |
32 36
|
mpbid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmY 0 ) < ( A rmY N ) ) |
38 |
30 37
|
eqbrtrrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> 0 < ( A rmY N ) ) |
39 |
38 19
|
breqtrrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> 0 < ( A rmY ( ( N + 1 ) - 1 ) ) ) |
40 |
23 13
|
ltsubposd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( 0 < ( A rmY ( ( N + 1 ) - 1 ) ) <-> ( ( ( 2 x. A ) x. ( A rmY ( N + 1 ) ) ) - ( A rmY ( ( N + 1 ) - 1 ) ) ) < ( ( 2 x. A ) x. ( A rmY ( N + 1 ) ) ) ) ) |
41 |
39 40
|
mpbid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( ( ( 2 x. A ) x. ( A rmY ( N + 1 ) ) ) - ( A rmY ( ( N + 1 ) - 1 ) ) ) < ( ( 2 x. A ) x. ( A rmY ( N + 1 ) ) ) ) |
42 |
|
jm2.17b |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( A rmY ( N + 1 ) ) <_ ( ( 2 x. A ) ^ N ) ) |
43 |
25 42
|
sylan2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmY ( N + 1 ) ) <_ ( ( 2 x. A ) ^ N ) ) |
44 |
|
2nn |
|- 2 e. NN |
45 |
|
eluz2nn |
|- ( A e. ( ZZ>= ` 2 ) -> A e. NN ) |
46 |
|
nnmulcl |
|- ( ( 2 e. NN /\ A e. NN ) -> ( 2 x. A ) e. NN ) |
47 |
44 45 46
|
sylancr |
|- ( A e. ( ZZ>= ` 2 ) -> ( 2 x. A ) e. NN ) |
48 |
47
|
nngt0d |
|- ( A e. ( ZZ>= ` 2 ) -> 0 < ( 2 x. A ) ) |
49 |
48
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> 0 < ( 2 x. A ) ) |
50 |
|
lemul2 |
|- ( ( ( A rmY ( N + 1 ) ) e. RR /\ ( ( 2 x. A ) ^ N ) e. RR /\ ( ( 2 x. A ) e. RR /\ 0 < ( 2 x. A ) ) ) -> ( ( A rmY ( N + 1 ) ) <_ ( ( 2 x. A ) ^ N ) <-> ( ( 2 x. A ) x. ( A rmY ( N + 1 ) ) ) <_ ( ( 2 x. A ) x. ( ( 2 x. A ) ^ N ) ) ) ) |
51 |
12 27 5 49 50
|
syl112anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( ( A rmY ( N + 1 ) ) <_ ( ( 2 x. A ) ^ N ) <-> ( ( 2 x. A ) x. ( A rmY ( N + 1 ) ) ) <_ ( ( 2 x. A ) x. ( ( 2 x. A ) ^ N ) ) ) ) |
52 |
43 51
|
mpbid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( ( 2 x. A ) x. ( A rmY ( N + 1 ) ) ) <_ ( ( 2 x. A ) x. ( ( 2 x. A ) ^ N ) ) ) |
53 |
24 13 28 41 52
|
ltletrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( ( ( 2 x. A ) x. ( A rmY ( N + 1 ) ) ) - ( A rmY ( ( N + 1 ) - 1 ) ) ) < ( ( 2 x. A ) x. ( ( 2 x. A ) ^ N ) ) ) |
54 |
|
rmyluc2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( N + 1 ) e. ZZ ) -> ( A rmY ( ( N + 1 ) + 1 ) ) = ( ( ( 2 x. A ) x. ( A rmY ( N + 1 ) ) ) - ( A rmY ( ( N + 1 ) - 1 ) ) ) ) |
55 |
8 54
|
syldan |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmY ( ( N + 1 ) + 1 ) ) = ( ( ( 2 x. A ) x. ( A rmY ( N + 1 ) ) ) - ( A rmY ( ( N + 1 ) - 1 ) ) ) ) |
56 |
5
|
recnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( 2 x. A ) e. CC ) |
57 |
56 26
|
expp1d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( ( 2 x. A ) ^ ( N + 1 ) ) = ( ( ( 2 x. A ) ^ N ) x. ( 2 x. A ) ) ) |
58 |
27
|
recnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( ( 2 x. A ) ^ N ) e. CC ) |
59 |
58 56
|
mulcomd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( ( ( 2 x. A ) ^ N ) x. ( 2 x. A ) ) = ( ( 2 x. A ) x. ( ( 2 x. A ) ^ N ) ) ) |
60 |
57 59
|
eqtrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( ( 2 x. A ) ^ ( N + 1 ) ) = ( ( 2 x. A ) x. ( ( 2 x. A ) ^ N ) ) ) |
61 |
53 55 60
|
3brtr4d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmY ( ( N + 1 ) + 1 ) ) < ( ( 2 x. A ) ^ ( N + 1 ) ) ) |