Metamath Proof Explorer


Theorem lcdlkreqN

Description: Colinear functionals have equal kernels. (Contributed by NM, 28-Mar-2015) (New usage is discouraged.)

Ref Expression
Hypotheses lcdlkreq.h
|- H = ( LHyp ` K )
lcdlkreq.u
|- U = ( ( DVecH ` K ) ` W )
lcdlkreq.l
|- L = ( LKer ` U )
lcdlkreq.c
|- C = ( ( LCDual ` K ) ` W )
lcdlkreq.o
|- .0. = ( 0g ` C )
lcdlkreq.n
|- N = ( LSpan ` C )
lcdlkreq.v
|- V = ( Base ` C )
lcdlkreq.k
|- ( ph -> ( K e. HL /\ W e. H ) )
lcdlkreq.i
|- ( ph -> I e. V )
lcdlkreq.g
|- ( ph -> G e. ( N ` { I } ) )
lcdlkreq.z
|- ( ph -> G =/= .0. )
Assertion lcdlkreqN
|- ( ph -> ( L ` G ) = ( L ` I ) )

Proof

Step Hyp Ref Expression
1 lcdlkreq.h
 |-  H = ( LHyp ` K )
2 lcdlkreq.u
 |-  U = ( ( DVecH ` K ) ` W )
3 lcdlkreq.l
 |-  L = ( LKer ` U )
4 lcdlkreq.c
 |-  C = ( ( LCDual ` K ) ` W )
5 lcdlkreq.o
 |-  .0. = ( 0g ` C )
6 lcdlkreq.n
 |-  N = ( LSpan ` C )
7 lcdlkreq.v
 |-  V = ( Base ` C )
8 lcdlkreq.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
9 lcdlkreq.i
 |-  ( ph -> I e. V )
10 lcdlkreq.g
 |-  ( ph -> G e. ( N ` { I } ) )
11 lcdlkreq.z
 |-  ( ph -> G =/= .0. )
12 eqid
 |-  ( LFnl ` U ) = ( LFnl ` U )
13 eqid
 |-  ( LDual ` U ) = ( LDual ` U )
14 eqid
 |-  ( 0g ` ( LDual ` U ) ) = ( 0g ` ( LDual ` U ) )
15 eqid
 |-  ( LSpan ` ( LDual ` U ) ) = ( LSpan ` ( LDual ` U ) )
16 1 2 8 dvhlvec
 |-  ( ph -> U e. LVec )
17 1 4 7 2 12 8 9 lcdvbaselfl
 |-  ( ph -> I e. ( LFnl ` U ) )
18 9 snssd
 |-  ( ph -> { I } C_ V )
19 1 2 13 15 4 7 6 8 18 lcdlsp
 |-  ( ph -> ( N ` { I } ) = ( ( LSpan ` ( LDual ` U ) ) ` { I } ) )
20 10 19 eleqtrd
 |-  ( ph -> G e. ( ( LSpan ` ( LDual ` U ) ) ` { I } ) )
21 1 2 13 14 4 5 8 lcd0v2
 |-  ( ph -> .0. = ( 0g ` ( LDual ` U ) ) )
22 11 21 neeqtrd
 |-  ( ph -> G =/= ( 0g ` ( LDual ` U ) ) )
23 eldifsn
 |-  ( G e. ( ( ( LSpan ` ( LDual ` U ) ) ` { I } ) \ { ( 0g ` ( LDual ` U ) ) } ) <-> ( G e. ( ( LSpan ` ( LDual ` U ) ) ` { I } ) /\ G =/= ( 0g ` ( LDual ` U ) ) ) )
24 20 22 23 sylanbrc
 |-  ( ph -> G e. ( ( ( LSpan ` ( LDual ` U ) ) ` { I } ) \ { ( 0g ` ( LDual ` U ) ) } ) )
25 12 3 13 14 15 16 17 24 lkrlspeqN
 |-  ( ph -> ( L ` G ) = ( L ` I ) )