Metamath Proof Explorer


Theorem linply1

Description: A term of the form x - C is a (univariate) polynomial, also called "linear polynomial". (Part of ply1remlem ). (Contributed by AV, 3-Jul-2019)

Ref Expression
Hypotheses linply1.p
|- P = ( Poly1 ` R )
linply1.b
|- B = ( Base ` P )
linply1.k
|- K = ( Base ` R )
linply1.x
|- X = ( var1 ` R )
linply1.m
|- .- = ( -g ` P )
linply1.a
|- A = ( algSc ` P )
linply1.g
|- G = ( X .- ( A ` C ) )
linply1.c
|- ( ph -> C e. K )
linply1.r
|- ( ph -> R e. Ring )
Assertion linply1
|- ( ph -> G e. B )

Proof

Step Hyp Ref Expression
1 linply1.p
 |-  P = ( Poly1 ` R )
2 linply1.b
 |-  B = ( Base ` P )
3 linply1.k
 |-  K = ( Base ` R )
4 linply1.x
 |-  X = ( var1 ` R )
5 linply1.m
 |-  .- = ( -g ` P )
6 linply1.a
 |-  A = ( algSc ` P )
7 linply1.g
 |-  G = ( X .- ( A ` C ) )
8 linply1.c
 |-  ( ph -> C e. K )
9 linply1.r
 |-  ( ph -> R e. Ring )
10 1 ply1ring
 |-  ( R e. Ring -> P e. Ring )
11 ringgrp
 |-  ( P e. Ring -> P e. Grp )
12 9 10 11 3syl
 |-  ( ph -> P e. Grp )
13 4 1 2 vr1cl
 |-  ( R e. Ring -> X e. B )
14 9 13 syl
 |-  ( ph -> X e. B )
15 1 6 3 2 ply1sclf
 |-  ( R e. Ring -> A : K --> B )
16 9 15 syl
 |-  ( ph -> A : K --> B )
17 16 8 ffvelrnd
 |-  ( ph -> ( A ` C ) e. B )
18 2 5 grpsubcl
 |-  ( ( P e. Grp /\ X e. B /\ ( A ` C ) e. B ) -> ( X .- ( A ` C ) ) e. B )
19 12 14 17 18 syl3anc
 |-  ( ph -> ( X .- ( A ` C ) ) e. B )
20 7 19 eqeltrid
 |-  ( ph -> G e. B )