Step |
Hyp |
Ref |
Expression |
1 |
|
linply1.p |
|- P = ( Poly1 ` R ) |
2 |
|
linply1.b |
|- B = ( Base ` P ) |
3 |
|
linply1.k |
|- K = ( Base ` R ) |
4 |
|
linply1.x |
|- X = ( var1 ` R ) |
5 |
|
linply1.m |
|- .- = ( -g ` P ) |
6 |
|
linply1.a |
|- A = ( algSc ` P ) |
7 |
|
linply1.g |
|- G = ( X .- ( A ` C ) ) |
8 |
|
linply1.c |
|- ( ph -> C e. K ) |
9 |
|
linply1.r |
|- ( ph -> R e. Ring ) |
10 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
11 |
|
ringgrp |
|- ( P e. Ring -> P e. Grp ) |
12 |
9 10 11
|
3syl |
|- ( ph -> P e. Grp ) |
13 |
4 1 2
|
vr1cl |
|- ( R e. Ring -> X e. B ) |
14 |
9 13
|
syl |
|- ( ph -> X e. B ) |
15 |
1 6 3 2
|
ply1sclf |
|- ( R e. Ring -> A : K --> B ) |
16 |
9 15
|
syl |
|- ( ph -> A : K --> B ) |
17 |
16 8
|
ffvelrnd |
|- ( ph -> ( A ` C ) e. B ) |
18 |
2 5
|
grpsubcl |
|- ( ( P e. Grp /\ X e. B /\ ( A ` C ) e. B ) -> ( X .- ( A ` C ) ) e. B ) |
19 |
12 14 17 18
|
syl3anc |
|- ( ph -> ( X .- ( A ` C ) ) e. B ) |
20 |
7 19
|
eqeltrid |
|- ( ph -> G e. B ) |