Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Basic algebraic structures (extension)
Univariate polynomials (examples)
linply1
Metamath Proof Explorer
Description: A term of the form x - C is a (univariate) polynomial, also called
"linear polynomial". (Part of ply1remlem ). (Contributed by AV , 3-Jul-2019)
Ref
Expression
Hypotheses
linply1.p
⊢ 𝑃 = ( Poly1 ‘ 𝑅 )
linply1.b
⊢ 𝐵 = ( Base ‘ 𝑃 )
linply1.k
⊢ 𝐾 = ( Base ‘ 𝑅 )
linply1.x
⊢ 𝑋 = ( var1 ‘ 𝑅 )
linply1.m
⊢ − = ( -g ‘ 𝑃 )
linply1.a
⊢ 𝐴 = ( algSc ‘ 𝑃 )
linply1.g
⊢ 𝐺 = ( 𝑋 − ( 𝐴 ‘ 𝐶 ) )
linply1.c
⊢ ( 𝜑 → 𝐶 ∈ 𝐾 )
linply1.r
⊢ ( 𝜑 → 𝑅 ∈ Ring )
Assertion
linply1
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 )
Proof
Step
Hyp
Ref
Expression
1
linply1.p
⊢ 𝑃 = ( Poly1 ‘ 𝑅 )
2
linply1.b
⊢ 𝐵 = ( Base ‘ 𝑃 )
3
linply1.k
⊢ 𝐾 = ( Base ‘ 𝑅 )
4
linply1.x
⊢ 𝑋 = ( var1 ‘ 𝑅 )
5
linply1.m
⊢ − = ( -g ‘ 𝑃 )
6
linply1.a
⊢ 𝐴 = ( algSc ‘ 𝑃 )
7
linply1.g
⊢ 𝐺 = ( 𝑋 − ( 𝐴 ‘ 𝐶 ) )
8
linply1.c
⊢ ( 𝜑 → 𝐶 ∈ 𝐾 )
9
linply1.r
⊢ ( 𝜑 → 𝑅 ∈ Ring )
10
1
ply1ring
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring )
11
ringgrp
⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ Grp )
12
9 10 11
3syl
⊢ ( 𝜑 → 𝑃 ∈ Grp )
13
4 1 2
vr1cl
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ 𝐵 )
14
9 13
syl
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 )
15
1 6 3 2
ply1sclf
⊢ ( 𝑅 ∈ Ring → 𝐴 : 𝐾 ⟶ 𝐵 )
16
9 15
syl
⊢ ( 𝜑 → 𝐴 : 𝐾 ⟶ 𝐵 )
17
16 8
ffvelrnd
⊢ ( 𝜑 → ( 𝐴 ‘ 𝐶 ) ∈ 𝐵 )
18
2 5
grpsubcl
⊢ ( ( 𝑃 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ( 𝐴 ‘ 𝐶 ) ∈ 𝐵 ) → ( 𝑋 − ( 𝐴 ‘ 𝐶 ) ) ∈ 𝐵 )
19
12 14 17 18
syl3anc
⊢ ( 𝜑 → ( 𝑋 − ( 𝐴 ‘ 𝐶 ) ) ∈ 𝐵 )
20
7 19
eqeltrid
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 )