Metamath Proof Explorer


Theorem linply1

Description: A term of the form x - C is a (univariate) polynomial, also called "linear polynomial". (Part of ply1remlem ). (Contributed by AV, 3-Jul-2019)

Ref Expression
Hypotheses linply1.p 𝑃 = ( Poly1𝑅 )
linply1.b 𝐵 = ( Base ‘ 𝑃 )
linply1.k 𝐾 = ( Base ‘ 𝑅 )
linply1.x 𝑋 = ( var1𝑅 )
linply1.m = ( -g𝑃 )
linply1.a 𝐴 = ( algSc ‘ 𝑃 )
linply1.g 𝐺 = ( 𝑋 ( 𝐴𝐶 ) )
linply1.c ( 𝜑𝐶𝐾 )
linply1.r ( 𝜑𝑅 ∈ Ring )
Assertion linply1 ( 𝜑𝐺𝐵 )

Proof

Step Hyp Ref Expression
1 linply1.p 𝑃 = ( Poly1𝑅 )
2 linply1.b 𝐵 = ( Base ‘ 𝑃 )
3 linply1.k 𝐾 = ( Base ‘ 𝑅 )
4 linply1.x 𝑋 = ( var1𝑅 )
5 linply1.m = ( -g𝑃 )
6 linply1.a 𝐴 = ( algSc ‘ 𝑃 )
7 linply1.g 𝐺 = ( 𝑋 ( 𝐴𝐶 ) )
8 linply1.c ( 𝜑𝐶𝐾 )
9 linply1.r ( 𝜑𝑅 ∈ Ring )
10 1 ply1ring ( 𝑅 ∈ Ring → 𝑃 ∈ Ring )
11 ringgrp ( 𝑃 ∈ Ring → 𝑃 ∈ Grp )
12 9 10 11 3syl ( 𝜑𝑃 ∈ Grp )
13 4 1 2 vr1cl ( 𝑅 ∈ Ring → 𝑋𝐵 )
14 9 13 syl ( 𝜑𝑋𝐵 )
15 1 6 3 2 ply1sclf ( 𝑅 ∈ Ring → 𝐴 : 𝐾𝐵 )
16 9 15 syl ( 𝜑𝐴 : 𝐾𝐵 )
17 16 8 ffvelrnd ( 𝜑 → ( 𝐴𝐶 ) ∈ 𝐵 )
18 2 5 grpsubcl ( ( 𝑃 ∈ Grp ∧ 𝑋𝐵 ∧ ( 𝐴𝐶 ) ∈ 𝐵 ) → ( 𝑋 ( 𝐴𝐶 ) ) ∈ 𝐵 )
19 12 14 17 18 syl3anc ( 𝜑 → ( 𝑋 ( 𝐴𝐶 ) ) ∈ 𝐵 )
20 7 19 eqeltrid ( 𝜑𝐺𝐵 )