Metamath Proof Explorer


Theorem linply1

Description: A term of the form x - C is a (univariate) polynomial, also called "linear polynomial". (Part of ply1remlem ). (Contributed by AV, 3-Jul-2019)

Ref Expression
Hypotheses linply1.p P = Poly 1 R
linply1.b B = Base P
linply1.k K = Base R
linply1.x X = var 1 R
linply1.m - ˙ = - P
linply1.a A = algSc P
linply1.g G = X - ˙ A C
linply1.c φ C K
linply1.r φ R Ring
Assertion linply1 φ G B

Proof

Step Hyp Ref Expression
1 linply1.p P = Poly 1 R
2 linply1.b B = Base P
3 linply1.k K = Base R
4 linply1.x X = var 1 R
5 linply1.m - ˙ = - P
6 linply1.a A = algSc P
7 linply1.g G = X - ˙ A C
8 linply1.c φ C K
9 linply1.r φ R Ring
10 1 ply1ring R Ring P Ring
11 ringgrp P Ring P Grp
12 9 10 11 3syl φ P Grp
13 4 1 2 vr1cl R Ring X B
14 9 13 syl φ X B
15 1 6 3 2 ply1sclf R Ring A : K B
16 9 15 syl φ A : K B
17 16 8 ffvelrnd φ A C B
18 2 5 grpsubcl P Grp X B A C B X - ˙ A C B
19 12 14 17 18 syl3anc φ X - ˙ A C B
20 7 19 eqeltrid φ G B